
Analysis of Methods

Final Report

Richard J. Mayer, ed.

Knowledge Based Systems Laboratory
Texas A&M University

w -o

!
f_

Z

_0
m

U
C

r

CDOC

-J • 0

_D A

_OE

e._ ,t C

I LL -C,--

I C" m E

v;I _0

co

cD
0
0

0

::2"

March 8, 1991

Cooperative Agreement NCC 9-16

Research Activity No. IM.06:
Methodologies for Integrated

Information Management Systems

NASA Johnson Space Center
Information Systems Directorate
Information Technology Division

Research Institute for Computing and Information Systems

University of Houston-C/ear Lake

TECHNICAL REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research lnsUtute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research
in the computing and information sciences. As part of thls endeavor. UHCL

proposed a partnership with JSC to Jointly define and manage an integrated
program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-
bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educaUonal facilities are shared by the two instituUons to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research
and professional level edueaUon in computing and information systems to

serve the needs of the government, industry, community and academia.
RICIS combines resourcesofUHCLand Itsgateway affiliatestoresearch and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relaUonshlps with other universities and re-
search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help
oversee RICIS research an4 education programs, while other research
organizaUons are involved via the "gateway" concepL

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-

Uon sciences. RICIS.working Jointlywith itssponsors, advises on research

needs, recommends principalsforconducting the research, provldcs tech-
nicaland administraUve support to coordinate the research and integrates

technicalresultsintothe goals of UHCL, NASA/JSC and industry.

m

===_

Analysis of Methods

Final Report

RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Richard J. Mayer, Keith A. Ackley, M.

Sue Wells, Dr. Paula S.D. Mayer, Thomas M. Blinn, Louis P. Decker, Joel A. Toland,

J. Wesley Crump, Dr. Christopher P. Menzel, Charles A. Bodenmiller and Michael T.

Futrell of Texas A&M University; Stu Coleman and Timothy Ramey of PIM, Inc. and

Dr. Tom Cullinane of Northeastern University. Dr. Peter C. Bishop served as RICIS

research coordinator.

Funding has been provided by the Air Force Armstrong Laboratory, Logistics

Research Division, Wright-Patterson Air Force Base via the Information Systems

Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between the NASA

Johnson Space Center and the University of Houston-Clear Lake. The NASA technical

monitor for this research activity was Robert T. Savely of the Information Technology

Division, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

Analysis of Methods

KBSL - 89- 1001

Knowledge Based Systems Laboratory

Department of Industrial Engineering
Texas A&M University

College Station, TX 77843

Copyright ©1989, Texas A&M University

Permission to use, copy. and distribute this document for any purpose and without fee is

hereby granted, provided that the above copyright notice appears in all copies and that both
the copyright notice and this permission notice appear in supporting documentation,

and that the name of Texas A&M University not be used in advertising or publicity pertaining

to the distribution of the document without specific, written prior permission.

The information in this document is subject to change without notice, and should not be

construed as a commitment by Texas A&M University. Texas A&M University assumes no

responsibility for the use of this information. The views contained in this document are those

of the research team. and should not be interpreted as representing the policies, either

expressed or implied, of the United States Air Force, NASA, or of the RICIS Program Office.

Analysis of Methods

Edited by

Richard J. Mayer, PhD

Authors

Richard J. Mayer, PhD

Keith A. Ackley

M. Sue Wells

Paula S.D. Mayer, PhD

Thomas M. Blinn

Stu Coleman, PIM Inc.

Timothy Ramey, PIM Inc.

Louis P. Decker

Joel A. Toland

J. Wesley Crump

Christopher Menzel, PhD

Charles A. Bodenmiller

Michael T. Futrell

Tom CuUinane, PhD Northeastern Unversity

Final Report

March 8, 1991

Acknowledgements: This report describes ongoing research at the Knowledge
Based Systems Laboratory of the Department of Industrial Engineering at Texas
A&M University. Funding for the lab's research in Integrated Information System
Development Methods and Tools has been provided by the United States Air Force
Hum..an Resources .Laboratory , .AI_..I-IRL_RL, Wright Patterson Air Force Base,
umo 434Jj, unaer me technical direction of USAF Captain Michael K. Painter,
under subcontract through the NASA RICIS Program at the University of Houston.

Additional funding has beenprovided by Tandem Computer Corporation for broader
coverage in the analysis of existing methods as represented by the Data Flow
Analysis and Structure Chart chapters.

Table of Contents

Introduction 1

IDEFI: Information Modeling 4

History and Purpose 4

Syntax and Semantics 6

Entity Class, Attribute Class, and Key Class 7

Link (or Relation) Classes 9

Inheritance 11

Metamodel 12

Entity classes and Owned Attribute Classes 13

Link Classes 14

Key Classes 15

Attribute Classes in Key Classes 15

Strengths and Weaknesses 16

Tips and Traps 16

Integration With Other Methodologies 17

Conclusions 17

IDEF0: Method for Function Modeling 20

History and Purpose 20

Syntax and Semantics 23

Basic Symbols (IDEF0 lexicon) 23

Grammar Rules for Function Descriptions 24

Concepts 26

Metamodel 27

Activities and Decompositions 28

Structures and Concepts 28

Links 31

Paths 31

Strengths and Weaknesses of IDEF0 32

Integration With Other Methodologies 33

Table of Contents

Conclusions 33

ENALIM: Conceptual Schema Design 37

History and Purpose 37

Syntax and Semantics 38

NOLOT (NOn Lexical Object Type) 38

LOT (Lexical Object Type) 39

Fact Types 39

Role Constraints 40

Identifier Constraint 40

Role Uniqueness Constraint 42

Total Role Constraint 42

Role Equality Constraint 42

Role Exclusion Constraint 43

Role Subset Constraint 43

Subtype Constraints 44

Subtype Exclusion Constraint 44

Subtype Total Constraint 45

Metamodel 45

NOLOT Families 45

Fact Types 47

Total Role Constraint 47

Subtype Constraints 48

Role Constraints 48

Strengths and Weaknesses 49

Tips and Traps 50

Integration With Other Methodologies 50

Conclusions 50

IDEFlx: Data Modeling 53

History and Purpose 53

Syntax and Semantics 55

Entities 55

Analysis of Methods ii

_ Table of Contents

Connection Relationships 56

Categorization Relationships 57

Non-Specific Relations 58

Attributes 58

Role Names 59

Keys 59

Foreign Keys 60

Metamodel 60

Entity Submodel 60

Relation Submodel 64

Key Submodel _.. 65

Attributes and Roles 65

Strengths and Weaknesses 66

Integration With Other Methodologies 68

Conclusions 69

Entity Relationship: Conceptual Schema Design 72

History and Purpose 72

Syntax and Semantics 73

Metamodel 75

Base Entity Classes 76

Entity Set/Relationship Set Interaction 77

Entity Set/Relationship Set/Attribute Interaction 78

Attribute/Value Set Interaction 80

Tips and Traps 80

Strengths and Weaknesses 81

Integration With Other Methodologies 82

Conclusions 82

Data Flow Diagrams: Design and Analysis 85

History and Purpose 85

Syntax and Semantics 86

Process 86

Analysis of Methods iii

Tableof Contents

Extemal Entity 86

Data Store 87

Data Flow 87

Differences between DFDs and Flow Charts 88

Differences between DFDs and Logical DFDs 88

Metamodel 88

Relationship of process to other entity classes 90

Leveling/decomposition 93

Role of the Structure and Link Entity Classes 93

Strengths and Weaknesses 94

Tips and Traps 95

Integration With Other Methodologies 96

Conclusions 96

Structure Charts: Modeling the Referential Structure 100

What are Structure Charts? 101

Syntax and Semantics 101

Modules 101

Intermodular Connections and Couples 102

Procedural Annotations 105

Metamodel 105

Modules 106

Lexical Relationships 107

Intermodular Connections 107

Couples 108

Labels 109

Control Structures 109

Connections in Control Structures 110

Strengths and Weaknesses 110

Tips and Traps 111

Integration With Other Methodologies 112

Conclusions 113

Analysis of Methods iV

Table of Contents

Glossary of lmportan! Terms 117

Analysis of Methods V

1

Introduction

I nformation is one of an organization's most important assets.For this reason the development and maintenance of an inte-

grated information system environment is one of the most important

functions within a large organization. The Integrated Information

Systems Evolution Environment (IISEE) project has as one of its

primary goals a computerized solution to the difficulties involved in

the development of integrated information systems. These difficulties
involve such issues as:

• What activities are performed within the organization by either

individuals or groups of individuals.

• What, how and when do these individuals or groups communi-
cate.

• What information is required by these individuals or groups.

• How is this information to be presented to the individual users of

the system.

To develop such an environment a thorough understanding of the

enterprise's information needs and requirements is of paramount

importance. This document is the current release of the research

performed by the Integrated Development Support Environment

(IDSE) Research Team in support of the IISEE project.

Our research indicates that an integral part of any information system

environment would be multiple modeling methods to support the

management of the organization's information. Automated tool sup-

port for these methods is necessary to. facilitate their use in an

integrated environment. An integrated environment makes it neces-

sary to maintain an integrated database which contains the different

kinds of models developed under the various methodologies. In

addition, to speed the process of development of models, a procedure

Analysis of Methods 1

Final Report Introduction

or technique is needed to allow automatic translation from one

methodology's representation to another wlule maintaining the in-

tegrity of both. The purpose for the analysis of the modeling methods

included in this document is to examine these methods with the goal

being to include them in an integrated development support environ-

ment. To accomplish this and to develop a method for allowing

intra-methodology and inter-methodology model element reuse, a

thorough understanding of multiple modeling methodologies is nec-

essary.

Currently the IDSE Research Team is investigating the family of

Integrated Computer Aided Manufacturing (ICAM) DEFinition

(IDEF) languages IDEF0, IDEFh and IDEFIx, as well as ENALIM,

Entity Relationship, Data Flow Diagrams, and Structure Charts, for

inclusion in an integrated development support environment. The

analysis of these methods began with the development of IDEFI

metamodels for each method and a metamodel for the integrated

database. This ongoing analysis has the following goals and should

provide answers to many questions about the nature and application

of system engineering methods..

• To gain a thorough understanding of the various methods.

• To determine where the methods overlap in order to assist in

achieving information sharing between the methods.

• To gain the understanding necessary to translate manually from

one method to another. The goal here will be to eventually

provide automatic assistance in model translation.

• To begin to extract the theoretic foundations of each model

method (if they exist).

• To develop the motivations (if they can be recovered) behind the

development of the methods for the purpose of determining the

original rationale for the development rather than how the meth-

ods have been applied.

• To understand how individual methods have been successfully

applied, possibly outside of their original intent.

• To determine if an original engineering discipline exists for

designing methods. This analysis represents reverse engineering

on methodology development. It will assist the research team in

determining what it takes to engineer a method.

• To determine which methodology should be used to discover

information required or to answer questions encountered at each

stage of the information system development process. This will

involve determining what the application limits of each method

Analysis of Methods 2

Final Report Introduction

are and how the corresponding models or documents produced

by a method can best be used.

• To determine what composes a good model of a given type. By

"good model," we mean that the model is a syntactically and

semantically correct model that concisely and correctly conveys

the information intended by the author. Furthermore, a "good

model" implies that the model was created using a methodology

appropriate for the domain.

The process of creating metamodels for the various methodologies
will allow the Research Team to define what information can be

managed by a method in its native form. Knowing exactly what

information is managed by two different methods is a precondition

to the information integration of the methods and of automated model
translation.

Traditionally, many people believe that many models contain the

same information just packaged differently. However, in our work to

date it is increasingly clear that this is not true. Little commonality

between the information contents of models produced by different

methods has been found. Different methods capture different aspects

of the information system being designed. Furthermore, it is clear that

a collection of methods, each managing its own part of the overall

evolving system def'mition, is essential in the development of an

integrated information system environment. All of the questions

regarding these methodologies have not been answered. This docu-

ment reflects our progress in the analysis of modeling methodologies
and automated model translation. 1

For a description of theoretic formalizations that have been established forIDEFI,
Ix. 3, and information constraint specification languages, interested readers
should also refer to Mayer R.J., et at. "Development Methodologies for Integrated
Information Management Systems". Final Technical Report to United Stales Air
Force Human Resources Laboratory. AFH L/LRL, Wright Patterson Air Force
Base,Ohio, Knowledge Based Systems Laboratory, Texas A&M University,
1988.; Menzel, C.P. and Mayer R.L, "IDEF3 Technical Report", Knowledge
Based Systems Laboratory Technical Report (KBSL-89-1006),I989.; Menzel,
C.P. and Mayer R.L, "Theoretical Foundations for Information Representation
and Constraint Specification", Knowledge Based Systems Laboratory Technical
Report (KBSL-89-1001),1989.

Analysis of Methods

2

IDEFI: Information Modeling

efore attempting any of the other chapters in this report theIntegrated Computed Aided Manufacturing (ICAM) DEF-

inition (IDEF) language IDEFI must be understood. IDEFI has a

simple and clean syntax which can be learned quickly. On the other

hand, there is an art to modeling in any methodology. IDEFI's design

makes it imperative that the modeler understand proper modeling
discipline.

As in each of the following chapters, this chapter will begin with a

discussion of IDEF1 's history and purpose and then move on to its

syntax and semantics. Those familiar with the methodologies may

not need to read the syntax and semantics sections, but keep in mind
that many methodologies have several dialects. In order to understand

the metamodels, it is important that the reader understand which

dialect is being modeled. In general, the original definitions of

methodologies are strictly followed.

2.1 History and Purpose

The family of IDEF methodologies is meant to provide methods and

languages for discovery, representation, and consensus development

of the views of an enterprise necessary to allow for planning and
design of integrated information systems. That is, the IDEF method-

ologies were specifically developed for supporting the domain ex-

perts and systems analysts in gathering information about the existing
environment and achieving consensus within the environment rela-

tive to those descriptions. IDEF0 was developed to model the deci-

sions, actions, and activities within a domain and the relationships

among those activities. IDEFI provides the methods for discovery

and representation of the logical structure and relations between basic

information groups actually managed by an organization. IDEF2

Analysis of Methods 4

Final Report IDEF I

provides a method for development of quantitative simulation models

that allow the study of time varying behavior of a system that is

stochastic in nature. IDEF3 supports the direct capture of domain

experts descriptions of process flow and object-state transitions.

IDEF5 is under development to support the capture and representa-

tion of domain knowledge, concepts, and terminology (sometimes

referred to as domain ontologies). IDEFIx was the first IDEF meth-

odology to focus on support of system design activities. IDEFIx data

incorporates criteria for efficiem conceptual schema design. IDEF4

was developed later to support the design of object-oriemed systems,

particularly systems encompassing the use of object oriented

databases. As a family, the IDEF methodologies provide the modeler

with the ability to concentrate on views of an enterprise without using

a "sledge hammer" methodology meant to model all views.

IDEFI models the information managed within a system. It is closely

related to but not a subset of IDEFIx. By providing a methodology

for data modeling and consequently conceptual schema database

design, the developers of IDEFIx added constructs which cloud the

distinction between data which is kept about objects and the objects

themselves. This was necessary since a conceptual schema by deft-

nition is a type of data dictionary (albeit a complex on-line dictionary

used to provide both access and control to distributed electronic

heterogeneous databases). Thus, a conceptual schema designer must

develop a structure that can both contain the data objects and the

information about those data object (such as their physical system

location). IDEFI however, was designed to be both more general and

less commiRed to any particular implementation concept. In a prop-

erly developed IDEFI model there should never be any misconcep-

tions, only the information kept within an organization about objects

(physical, abstract or data) is being modeled.

IDEFI entities need not correspond directly to any particular object

in the real world. The IDEFI model represents the modeler's analysis

results. The analysis method results in a reconstruction of the under-

lying structure and grouping of the information actually managed. In

the real world these logical groups of attributes may be distributed

over many data artifacts. Also, since data can be kept by the organi-

zation about any object (physical, abstract or data), this flexibility is

necessary when attempting to establish information requirements.

However, it is not constraining enough when doing database design

(hence the need for IDEFIx, IDEF4, Entity Relationship (ER) and

other design methods).

As whh any of the IDEF methodologies, IDEFI has primarily been

used by defense contractors under contract to the Air Force. Hughes

has a proprietary version of IDEFI called ELKA (Entity Link Key

5Analysis of Methods

Final Report IDEFI

Attribute) [Ramey 85]. IDEFI's connection with defense projects is

good in that a strong underlying analysis method has been developed

for the application of IDEFI modeling. With the emergence of the

recognition of the need for a system development framework of

methods and the availability of low-cost integrated tools for IDEF1

application, we can expect to see IDEFI gain more widespread usage.

2.2 Syntax and Semantics

The lexicon of the IDEFI language syntax consists of four basic

symbols:

/

\
I_*a,/CIMI l.a_l

Labeled boxes denoting entity classes,

Labeled lines with five different types of diamond shaped termi-

nators denoting relation classes,

Symbob d_la¢

mm'tm_ climes

Ai cl_ Idol "_ L]/_(_ /

Labels inside the boxes denoting attribute classes,

(WXWWXV yyyy_ }_(ZZZZ) $w_bol, d_'_ |

I key clans
X30(XXX I "

Parenthesized (or underlined) sets of labels denoting key classes.

Analysis of Methods 6

FinalReport IDEF1

2.2.1 Entity Class, Attribute Class, and Key Class

The concept of an "entity class" is meant to capture the notion of a

basic information structure the extension of which at any point in time

is a set of informational items caLled entities. The two basic concepts

behind the notion of an entity arc:

• they are persistent (i.e., the organization expends the resources

(time, money, equipment or facilities) to observe, encode, record,

organize and store the existence of individual entities).

• they can be individuated (i.e. they can be identified uniquely from

other entities).

The IDEFI language does not provide a means of representing

individual entities. Only groups of entities which share exactly the

same types of attributes can be represented. These groups from an

IDEFI view are called classes. A useful memory aid for this notion

is to think of the entity class as a layout for a card file (see Figure

2.1). An entity class has a name and a unique identification number

associated with it, along with a glossary entry and a list of synonyms.

An entity class is represented by a rectangular box with the label of

the entity class located in the lower left comer surrounded by a

smaller rectangle and with the entity class number located in the lower

right comer of the larger box.

- I(sSN)

EMPLOYee 142

Figure2.1 Card file interpretation of an IDEFI entity class.

An entity class is actually defined by the set of attribute classes that

def'me the characteristics of all the possible entities in all of its

extensions. It is important to note that the set of attributes is more

important that the notion conveyed by the label on the entity class

Analysis of Methods 7

Final Report IDEF j

EM]_ nN

_AI.A P.'Lq

(SSN)

Smlm_

A_lb_J

Bucket Anally

name! In other words, one can think of the entity class as simply a

labeled bucket with no meaning beyond that of the collection of

attribute classes it contains (see insert for example). In fact, it is

considered good practice to use an entity class label that does not

name a physical or data object in the domain since that could confuse
an uninformed reader. The labels of the attribute classes that define

an entity class axe simply listed in the entity class box below the key

class designators and above the entity class label.

The occurrence of the same attribute class in multiple entity class

def'mitions defines a relationship between those entity classes. In

order to establish the existence dependency between such entity

classes, one entity class must be determined to be the "owner" of the

shared attribute class. Every attribute class that ends up being a part

of an IDEFI model has exactly one owner entity class. When deciding

on the addition of an attribute class to an entity class; two rules must

be followed. The first is referred to as the No-Null Rule. This rule

states that no member of an entity class can take a null value for its

attribute that corresponds to the added attribute class (Figure 2.2).

The second rule, the No-Repeat rule, states that no member of an

entity class can take more than one value at a time for its attribute

that corresponds to the added attribute class (Figure 2.3).

Each entity class has associated with it at least one key class. A key

class is just a special subset of the attribute classes which define the

entity class. What makes such key class subsets special is that it can

be determined that for any instance, the values of the attributes of that

(SID)

O1PR

ASIOC

S'BI_NT

A _tuclen! c_rl _e a,,ocia_e_d _'tth zer_ ov one G_"ek o_mniz_'ion*

fSIDI .I _. J (SID)

GPR I ASSOC

Figure 2.2 Example of the No Null Rule.

Analysis of Methods

Final Report IDEF I _

t IMP#. 7_

[t..-..a _ u._ ,. D.

An omptoym may Imv* re.m, et_ or m_ agekiop.

(ssN)

sad_

Figure 2.3 Example of the No-RepeatRule.

instance (which correspond to the attribute classes in a key class),

collectively, will uniquely identify that instance of the entity class

from all other instances. In an IDEFI diagram, the key class subsets

are located in the upper left comer of the entity class for which the

key class is being defined. Key classes are not named or labeled. A

key class is denoted by enclosing the subset of attribute classes that

make up the key class in parentheses or by underlining the subset. In

the metamodels of this report we will use the parenthesis convention.

It should be noted that entity classes are allowed to have multiple key

classes. The multiple key classes would reflect multiple ways of

identifying an entity class instance. For example, in a model of a

typical business environment, an instance of an EMPL entity class

might have multiple key classes. The first would consist of the

employee's name in combination with an employee number. The

second key class may consist only of the employee's Social Security

Number. In both cases, an EMPL entity class instance could be

uniquely identified by either key class (see insert for example).

2.2.2 Link (or Relation) Classes

A link is a binary relationship that exists between two entities. It is

established by the sharing of a common attribute(s) which must

assume the exact same value in each of the two entities involved in

the link. In IDEF1 the generalization of all such links involving
instances of the same two classes of entities and the same shared

class(es) of attribute(s) is called a link class. A link class establishes

a binary relationship between two entity classes that share a common

attribute class. A link class is represented by a line running between

the boxes of the two entity classes. A label, representing the name of

the link class, is displayed over the line representing the link. Because

Analysis of Methods 9

Final Report IDEF I

of the attribute class ownership property, a link indicates a depen-

dence of one entity class on the other entity class. The dependent

entity class is considered to be existent dependent since a member of

that entity class cannot exist unless the corresponding member of the

independent entity class exists. In general IDEFI uses links to repre-

sent common types of organizational constraints (sometimes referred

to as business rules) on the information that is managed. It should be

noted that not all of the business rules can be represented with the

standard IDEFI language constructs. In a later section we will de-

scribe a constraint language called the Information Systems Con-

straint Language (ISyCL). ISyCL (pronounced "icicle") is used to

augment the standard IDEFI language as needed in this report to

capture some of the more complex rules of individual methods.

A link class also has a cardinality associated with it, specifying the

number of members of each entity class that can be involved in a

relationship with a single member of the other entity class. Figure 2.4

shows the syntactic representation of a one-to-zero-or-one relation-

ship. A link with this cardinality represents the fact that one member

of the independent entity class can be associated with zero or one

members of the dependent entity class. However, each member of

the dependent entity class is associated with one and only one

member of the independent entity class.

_t entity clm _ entity ch,ss

in thht _httion in this mlmion

/ /

t -
Figure 2.4 One-to-zero-or-one Link Class

Figure 2.5 shows the syntactic representation of a weak-one-to-many

relationship. In this situation, an independent entity class member can

be associated with zero, one, or many dependent entity class mem-

bers. Again, each member of the dependent entity class is associated

Independent entity, class Dependent entity, class

in this relation in this relation

// //

Figure 2.5 Weak-one-to-many Link Class

Analysis of Methods 10

Final Report ID EF I _

with one and only one member of the independent entity class.

Figure 2.6 shows the syntactic representation of a strong-one-to-

mmy relationship. Here, the independent entity class member must

be associated with at least one instance of the dependem entity class

member. Again, each member of the dependent entity class is asso-

ciated with one and only one member of the independent entity class.

t ,-ntCty d,
in thil mlatlon

/

DEPARTMENT] EMPLOYEE

entity cla.
in this relation

/

Figure 2.6 Sl_ong-one-to-many Link Class

Notice that IDEFI does not allow a many-to-many relationship or a

zero-or-one-to-zem-or-one relationship in what is considered a f'mal

model. These relationships make the dependency situation ambigu-

ous. The resolution of such uncertain situations (which often arise in

the early phases of the corresponding analysis) often results in the

analyst determination that the suspected relationship is unsupported

by the analysis data. Altematively the analyst may discover addi-

tional entity class(es) on which both of the entity classes involved in

the "many to many" relationship axe independent (an example of this

is shown in Figure 2.7).

ladalpemekmt ¢attr,/clMI

tlhls ml_

/
in IIMm ml_

/

I_II_-ImI_-P,_R i

lasxlla_a_l em_ claal

hs _ mla_

Figure 2.7 Resolution of a Many to Many Relation

Note also that, when specifying a one-to-many link class (either weak

or strong), there is no way of constraining that link to a specific upper

bound (for example, a one to five relationship). Such details are left

to ISyCL if considered absolutely necessary.

2.2.3 Inheritance

Previously we noted that the sharing of attribute classes between two

entity classes was the basis for declaring the existence of a link class

between those entity classes. However, link classes are generally

Analysis of Methods 11

FinalReport IDEF1

suspected (or proposed) by the analyst prior to the discovery of

exactly which attribute classes are shared. IDEFI also places certain

restrictions on which attribute classes may be (and must be) shared
in order for a valid link class to be defined. When a link class is

defined between two entity classes, certain information is shared

between those entity classes. The attribute classes that make up the

key classes of the independent entity class must become attribute

classes for the dependent entity class. It is possible for the inherited

attribute classes to become part of the key class of the depenff, t

entity class. In fact, the attributes must become part of the key class

when a link class has a one-to-zero-or-one link cardinality. In the case

of a strong-one-to-many relationship the attributes that are shared

cannot make up a key that would be a subset of the key of the

independent entity class from which they came.

2.3 Metamodel

In this section the metamodel of IDEFI (Figure 2.8) will be described

in detail. Since the metamodels describe the information an informa-

tion system would have to keep about a model, the IDEFI method
has been chosen for use on all of the metamodels.

One caveat about the link class labels used in the metamodels is that

all link class labels have two parts. The f'urstpart of the label describes

the relationship between the entity classes from independent to

{OECN, ACN) _fhm./o_,aer of

• v OaCN= I_N

AT1FIt L'3., _

accurJ_aa/

m..of

(_I[CN, TAO)
OIK'N
ACN

ACOCC

acu m_fvo__in/--vm m

front of ,,,,,,_0.CID.MtC:N'T.BACK)

SCN._ONa" ",_'_IJ..AJgmmI:I.._IIEL

Et'N. mACK _ Ca:aflaal'ay

..... b,___ I U__CL*SS 13

_v_mmd byl

emnn_r_cffdiqs.lay=._li=player_of

I" I' I I'ACoOCC_IN KC

in1_l_/de fi_,r of

DECN. TAG,
KECN. KCID.

_ID, FIRON'T,B ACK

is_u_.d_in/ use,/

ke)_cir,_of met_of

:LCID, FRONT. BACK, l
¢ECN, KCID)

Figure 2.8 IDEFt Metamodel of IDEFI

Analysis of Methods 12

FinalReport IDEF I _

dependent and the second part describes the fimctional relationship

between the dependent and the independent. In addition, some link

class labels are augmented with "namel = name2." This associates
the inherited attribute class with the attribute class from which it was

inherited (see Figure 2.8 for examples).

The metamodel of IDEFI has been divided into four logical pieces

to facilitate the explanatory process: I) entity classes and attribute

classes, 2) link classes, 3) key classes, and 4) attribute classes in key

classes. Each piece will be described in the following sections.

2.3.1 Entity classes and Owned Attribute Classes

The key class of the entity class ENTITY_CLASS is made up of the

single owned attribute class called the Entity Class Name (ECN) (see

Figure 2.9). An entity class defines zero, one, or many attribute

classes. An example of the need for a weak-one-to-many relationship

is that an entity class serving as a dependent entity class in a

one-to-zero-or-one relationship may not define an owned attribute
class.

The entity class ATI'ribute CLass (ATIR_CL) is uniquely identified

by its Attribute Class Name (OAN) and the Owner Entity Class Name

(OECN) which defines it. Each entity class is made up af a set of

attribute classes which define the properties for the entity class. This

relationship is defined by the one to zero, one, or many link between

ENTITY CLASS and Attribute Class OCCurrence (AC_OOC). The

entity class AC_OCC is uniquely defined by the key class consisting

of two attribute classes: 1) the inherited attribute class Displaying

Entity Class Name (DECN) and 2) the owned attribute class TAG

which represents the label of the attribute class that is to be displayed

(OECN, AC_] _o_ncr o_

k'>
OIK_- ECN

occun_u/

occune'nce_of
displays/all,player of

DEC'N= ECN

Figure 2.9 Metamodel of Entity and At1_ribmeClasses.

Analysis of Methods 13

Final Report IDEF1

in the entity class represented by DECN. The entity class AC_OCC

also contains two inherited non-key attribute classes: OECN and

ACN. These inherited attribute classes contain the information nec-

essary to determine which attribute class this class is an occurrence
of.

2.3.2 Link Classes

A link class represents a binary relationship between two entity

classes as shown by the metamodel of link classes in Figure 2.10. A

link class is uniquely identified by a key made up of three attribute

classes: 1) a Link Class IDentifier (LCID), 2) the independent entity

class participating in the link class (FRONT), and 3) the dependent

entity class participating in the link class (BACK). However, a link

constraint exists that states that every entity class must participate h_

at least one link class. This is represented by the following ISyCL
constraint.

for_all e of entity_class ENTITY_CLASS
(for_some I of entity_class LINK_CLASS

(e = front_of(I)
or

e= back_of(I)))

(ECN_

EJClTI'Y_CLASS] 2

i_,cts_u_flonl_i.n/ I

front of j_ (LCID. FROHT. BACK)

I_a_ - _o_",.,'ILL,_. m_.

"o_k of -- -

Figure 2.10 Metamodel of Link Classes

The emity class LJNK_CLASS contains three additional attribute

classes: 1) the owned attribute class Link LABEL (LLABEL) which

is the label on the link representing the relationship from the inde-

pendem entity class to the dependent entity class, 2) the owned

attribute class Functional LABEL (FLABEL) representing the func-

tional relationship between the dependent and the independent, and

3) an owned attribute class CARDINALITY which keeps track of the

cardinality of the link class. The attribute values that are possible for

the attribute class CARDINALITY include one-to-one, weak-one-

to-many, and strong-one-to-many.

Analysis of Methods 14

Final Report IDEFI

2.3.3 Key Classes

Every entity class EN'ITVY_CLASS has at least one entity class

KEY_CLASS associated with it. As shown in Figure 2.11, the entity

class KEY_CLASS is identified by the owned attribute class Key

Class IDentifier (KCID) and the inherited attribute class Key Ent._y

Class Name (KECN). The inherited attribute class contains the

information necessary to determine the owner entity class for a given

key class.

In addition, the model must keep track of the information needed to

show which key classes migrated through which link class. This

information is modeled using the entity class Key Class FROM Link

Class (KC-FROM-LC). The key class of the entity class KC-FROM-

LC is made up of both the key class from the entity class

KEY_CLASS and the key of the entity class LJNK_CLASS.

tEc_)

_N'ITrY CLASS r
-,-ts..u .f_nt_in/ I

f_nt_of .,,,,Q (LCID. FRONT. BACK)

I_. _oNT _,/ILL,J_.,m,_._

__.__k..,,_ [Lm__CL,_S 13
back_of

individua_e..d_l_,/
ownm'_of

(LCID, FRONT, BACK.

KliCN, I_ClD)

KC_FR OM_LC [t_

Figure 2.11 Metamodel of Key Classes

2.3.4 Atlribute Classes in Ke_ Classes

Key classes are made up of a collection of attribute classes. However

since an attribute class can participate in multiple key classes of a

given attribute class, it was necessary to add the entity class Attribute

Class OCCurrence IN Key Class (AC_OCC IN KC) as shown in

Analysis of Methods 15

Final Report IDEFI

Figure 2.12. The key class for the entity class ACOCC IN KC is

the union of the key classes for the entity classes AC_OCC and

KEY_CLASS for which the entity class ACOCC IN KC is depen-

dent. In addition, since the attribute classes contained in a key class

can be made up of either owned or inherited attribute class, another

entity class Attribute Class OCCurrence From Link Class

(AC_OCC_F_LC) had to be added to the model to record the fact

that a given attribute class migrated across a link class.

_L_I I (DBCN, TAO,

iim*-tlpmt_of _l I_(::N, KC_)

/
| __

1'_1 r_.,_, 1
i t '_-_ I,

cm _b_k4"_*_o f

<>

DIEC'N, TAO,
KJI_'N, KCID,
I.C1D. PROfiT, BACK

AC OCC_F_I.C' I 7

Figure 2.12 Metamodel of Attribute Classes in Key Classes

2.4 Strengths and Weaknesses

One of the weaknesses of the IDEFI methodology is the fact that a

modeler cannot talk about attribute values. That is, the methodology

does not allow the modeler to talk about instances of an entity class

and the values of the attributes of an instance of an entity class. Only

the entity class as a whole can be discussed.

2.5 Tips and Traps

The IDEFI methodology is an iterative development process which

is observation based and contains the five following distinct phases:

• Phase 0 m context setting and data collection

• Phase 1 m entity class def'mition

• Phase 2 -- link class definition

• Phase 3 _ key attribute class definition

• Phase 4 _ non-key attribute class definition

In phase 0, the model's context, viewpoint, And purpose are estab-

lished. The context describes the subject and the boundary of the

model. The perspective from which to interpret and understand the

Analysis of Methods 16

Final Report IDEF I -

model is defined by the viewpoint. The intent and objectives of the

model are def'med by the model's purpose. In addition, the collection

and organization of data about the domain is started. In an IDEFI

model neither an entity class nor an attribute class may be introduced
unless it can be traced back to some data which is either:

• currently managed in the domain, or

• a requirement to be managed in the future in the domain.

The model diagram begins taking form in the entity class def'mition

phase. In this phase, the modeler defines the candidate entity classes
of the model.

Similarly, in the link class definition phase, the relations between

pairs of entity classes are defined. These relations are inferred from

the entity class definition of the previous phase.

Next comes the definition of the key attribute classes, that is, those

attribute classes that are needed to define the key classes of an entity

class are defined in this phase along with the key classes.

In the last phase, all non-key owned attribute classes are defined for

all of the entity classes.

2.6 Integration With Other Methodologies

Based on the metamodels of each of the methodologies, the IDSE

Research Team is seeking to enable automated model translation.

This allows information represented in one model to be translated

into the equivalent representation in another methodology if one

exists. Consequently, the modeler is able to use multiple methodol-

ogies without having to repeatedly enter equivalent information in

each methodology.

2.7 Conclusions

A brief description of the IDEF1 method has been included to help

familiarize and refresh the reader's knowledge about the method in

order for that he or she may better understand the metamodels

presented in this document. This chapter does not attempt to be an

authoritative description of the IDEF1 method: it provides only a brief

and concise description of IDEFI.

The metamodel of IDEFI presented serves as an integration platform

that the IDSE Research Team will use in the pursuit of a neutral

information representation schema.

Analysis of Methods 17

Final Report IDEF z

Appendix A. Abbreviations used in the IDEFI Metamodel

AC_OCC: Attribute _-'lass OCCurrence; an entity class.

AC_OCC_F_LC: Attribute _lass OCCurrence from Link Class; an

entity class.

AC_OCC IN KC: Attribute Class OCCurrence in Key Class; an

entity class.

ACN: Attribute Class Name; part of a key class of ATTR_CL.

ATTR_CL: ATTRibute CLass; an entity class.

BACK: synonym for ECN.

DECN: Displayer _Entity Class Name; part of the key class of
AC_OCC.

ECN: Entity _lass Name; occurs in the first key class of EN-

TITY_CLASS, uniquely identifies an entity class.

ENTITY_CLASS: an entity class.

FRONT: synonym for ECN.

KC_FROM_LC: Key Class from Link Class; an entity class.

KCID: Key Class I_..__ntifier; part of the key class of KEY_CLASS.

KECN: Key _Entity Class Name; part of the key class of

KEYCLASS.

KEY _CLASS: an entity class.

LCID: Link Class ID.._entifier; occurs in the key class of

LINK_CLASS, uniquely identifies a link class.

LINK _CLASS: an entity class.

OECN: Owner Entity Class Name; part of a key class for ATrR_CL.

TAG: part of the key class to AC_OCC.

Analysis of Methods 18

Final Report IDEF I -

References

Mayer, R. J., IDEFI - Information Modeling; Theory and Practice,

Department of Industrial Engineering, Texas A&M University,
1988.

Ramey, T. L., Entity Link Key Attribute Semantic Information

Modeling, Internal Technical Report, Hughes Grounds System

Group, Fullerton, CA, October 24, 1985

Menzel, C., and Mayer, R., J., Theoretical Foundations for Informa-

tion Representation and Constraint Specification, Technical Re-

port, Knowledge Based Systems Laboratory, Texas A&M

University, March 6, 1991.

Analysisof Methods 19

3

IDEFo: Method for Function Modeling

his chapter introduces the history and purpose of the IntegratedComputer-Aided Manufacturing (ICAM) DEFinition (IDEF)

language IDEF0 method. Next, it briefly introduces the syntax and

semantics of the IDEF0 method. Finally (and most important) the

paper describes a complete IDEFI metamodel of IDEF0. The purpose

of the metamodel is to act as an integration platform with other

methodologies such as IDEFI, IDEFlx, IDEF3, IDEF4, ENALIM,

ER, Data Flow, and Structure Charts.

3.1 History and Purpose

The IDEF0 technique is based entirely upon a cell modeling tech-

nique known as the Structured Analysis and Design Technique

(SADT) [Ross 81]. The Air Force Computer Aided Manufacturing

(AFCAM) program in 1973 developed the foundations of the method

through a joint effort with Boeing, and Softech [Buffum 74]. The

method was based on the principles of "Human directed Activity Cell

Modeling" of Dr. Shizuo Hori. Dr. Ross combined these basic

principles with concepts that had evolved from his pioneering work

in software engineering and programming language design to form

in a structured technique for system analysis and a language for

effective communication of the analysis results.

The purpose and philosophy of the resulting method is best stated in

the original development report [Buffum 74] as follows:

Structured analysis is founded on very simple basic

principles that stem from the primary contention that:

To divide is to conquer, providing that it is clear how

the divided pieces are structured together to consti-
tute the whole.

Analysis of Methods 2O

Final Report IDEFo

Repeated application of this principle, with suitably

simple notation, makes it possible to cover any subject

from any point of view to any des/red degree of

completeness. The primary discipline quite simply is

that "Everything worth saying about anything worth

saying something about can be said by talking about

six or fewer pieces." A true believer in these observa-

tions wRl automatically appreciate structured analysis

but reduction to practice of the full discipline is a

significant challenge. The primary objective of struc-

tured analysis description is to communicate com-

pletely and effectively. It must be clear just what is

being said, and what is meant by what is being said.

As long as clarity is achieved, then both agreement

and disagreement can be accommodated.

The AFCAM program used this technique to build the first functional

architecture of aerospace manufacturing. Following the AFCAM

application Softech continued to evolve the resulting method into a

software design technique. In 1976 the Air Force Integrated Com-

puter-Aided Manufacturing (ICAM) follow on program employed

the commercial version (known as SADT) to build a composite

architecture of manufacturing as the first step in planning the ICAM

program. In 1978 Doug Ross, Clair Feldman, and Richard Mayer

took on the task of reworking the SADT method, cutting out the

design principles and specializing the method to be a technique for:

• enhancing communication among the domain experts.

• performing non-departmentalized functional analysis of large

organizational systems for information integration planning (a'

la Dr. Joe Harrington).

• organizing the thought process of planners and analysts.

The IDEF0 method is used for modeling the functions of an organi-

zation (decisions, actions, and activities) and the relationships be-

tween those functions. Since the IDEF0 method and syntax

incorporates (for function modeling) many of the early concepts of

structured programming and design, the method supports the follow-

ing principles [Ross 75]:

• the Modularity Principle: break the problem analysis results into

its component parts and formalize the relations (protocol of

interface) between those parts;

• the Abstraction Principle, identify common properties of func-

tions and objects and define new functions or objects which can

stand for classes defined by the common properties.

Analysis ofMethods 21

Final Report IDEFo

• the Hiding Principle: display only the level of detail that is

relevant to the aspect of the model being viewed

• the Localization Principle: group activities or objects together

that function to solve a particular problem.

The graphical language of the IDEF0 method supports these princi-

ples by allowing the author of a model to represent his results in terms

of activity descriptions and the objects which form the relations

between those activities arranged in an hierarchical structure. The

root of this structure summarizes the results at the most abstract/gen-
eral level. Each of the lower level nodes in the final tree structure

provides more specific information than its parent. As the hierarchy

is traversed downward the tree expands, unfolding the details of both

the activities and the objects which form the relations between the

activities. Figure 3.1 illustrates this hierarchical structure aspect of

the syntax of the IDEF0 modeling method.

'Th'Je_ tFm'l t* [

tit* "lmm*t¢"ef]
at,.:. _ql_m

MORE GENERAL

MORE F_FTAII.ED

Figure 3.1 Example IDEFo Decomposition

Analysis of Methods 22

Final Report IDEFo

3.2 Syntax and Semantics

The syntax and semantics of the IDEF0 method evolved over many

years through extensive human factors evaluations largely conducted

by Doug Ross. The result is a language that, if used correctly, has

proven capable of expressing functional architectures that are easy to

understand. The foLlowing sections describe the basics of the lan-

guage syntax and the "common sense" notion of the use semantics

of this language.

3.2.1 Basic Symbols (IDEF01exicon)

The fundamental building blocks of the IDEF0 method language are

labeled boxes denoting classes of functions (decisions, actions, or

activities) and labeled arrows denoting the conceptual or real objects

that form the relations or interfaces between the activities (Fig-

ure 3.2).

CONTROL

T
I_!CI4ANISM

Figure 3.2 Generalized Function or Activity Box

Two types of diagrams are supported in the IDEF0 language "Con-

text" diagrams and "Decomposition" diagrams. A context diagram

displays a single activity box with its associated concepts (see Fig-

ure 3.3). A decomposition diagram displays three to six activity

boxes each with their associated concepts. The decomposition dia-

gram also displays the relations between activities formed out of the

shared concepts between the activities denoted by arrows from one

activity box to another (see Figure 3.4). An IDEF0 model is def'med

M_uf_t_e

P_luct

AO

Figure 3.3 Example of a context diagram.

Analysis of Methods 23

Final Report IDEFo

Analysis of Methods

,l
A1

I l_'odk_ I_..Jtp 1

, p

,-..1 i -

Figure 3.4 Example of a decomposition diagram.

as a context diagram and a set of decomposition diagrams along with

a set of glossary data sheets (one for each IDEFo model element).

From this simple graphical lexicon and the following set of grammar

rules, a model can be developed that is both concise and easily
understood.

3.2.2 Grammar Rules for Function Descriptions

Figure 3.2 illustrates the basic structure of the representation of a

function or activity in IDEF0. The position of the arrows entering and

leaving the box represent the classification of the role a concept plays

in its association with an activity. The four roles are input, control,

output, and mechanism (ICOMs). The inputs enter the box from the

left. They represent the concepts that are transformed in the execution

of the function. The concepts serving in the control role enter at the

top of the box. Concepts used as controls are assumed to influence

how the function is performed. Concepts representing mechanisms

are representedby arrows that attach to the box from the bottom. They

represent the means by which the function is accomplished. For

example, trains might be a mechanism of the activity "ship goods".

The concepts which are represented by arrows that exit the box from

the right represent the results produced by the function.

The IDEF0 language grammar requires that each function have at

least one control and one output to be valid. There is no hard limit on

the number of inputs, controls, outputs, and mechanisms that can be

connected with a function, but good practice limitations are four to

six of each. More than four to six is difficuh to read and cannot be

drawn legibly by hand or computer (without reduction). Remember

that IDEF0 models are not intended to be specifications but rather

vehicles for enhancing communication. If they are made unreadable

by unnecessary clutter then they are generally useless.

24

FinalReport IDEFo _

Information about each function in an IDEF0 model can come from

seven sources:

• the connotations of the name of the function.

• the position of the function at a level in the hierarchy.

• the glossary associated with the function.

• the concepts associated with the function.

• the parent of the function.

• the relationships of a function to its siblings on a diagram.

• the decomposition of a function into its children.

The IDEF0 language provides special syntactic elements for each of

these sources of information. The name of the activity in the box

covers the first. The position of the activity in the hierarchy is encoded

in a unique number associated with each activity box. Each node

number is prefixed with the capital letter "A". The root node is

numbered with a 0. All the rest of the nodes are numbered with the

number of their parent followed by a number representing their

relative position with their siblings (see Figure 3.5). A textual glos-

sary entry is associated with each activity (and concept). The concepts

associated with an activity can be determined directly from the

diagram. The source/sink of those concepts ff local to the diagram

can be traced on that diagram. If the source/sink is from the parent

diagram then a code (called an ICOM code) provides the documen-

tation for traceability to the parent level. Thus it is the physical arrows
and ICOM codes that allow the communication of information rela-

tive to the relationship between individual (or groups of) activities.

The description of an activity is not actuaUy considered to be captured

in the text but rather in the decomposition diagram associated with

that activity. Every activity can be decomposed into three to six

functions. This range was chosen (gain for human factors consider-

ations) to prevent a function from being described in too much or too

little detail. Each time a decomposition occurs it is supposed to

contain a detailed description of the parent function. Starting at the
AO

//\\
AI A2 A3 _4

//\
All AI2 AI3

.//\\
AI_ AI'32 A13_, At_

Figure 3.$ Example of the node numbering schema.

25Analysis of Methods

Final Report IDEFo

top, the process is recursive with each new level of decomposition

giving more detail about an activity is to better describe the processes

that occur. Again, Figure 3.1 illustrates the idea of decomposition

into greater levels of detail. This characteristic of IDEF0 is consistent

with hierarchical, top-down design approaches using refinement

techniques.

3.2.3 Concepts

A concept is a piece of information, knowledge, data or physical

object that is produced and/or consumed by an activity in an IDEF0

model. The term concept is used to include both tangible and intan-

gible items. That is, concepts can be either actual things (e.g.,

documents and machined parts) or abstract ideas (e.g., production

capacity, experience, problems, or sales quotas). This allows IDEF0

to model enterprises in many different domains. A key capability of

the IDEF0 method and language is its support for the representation

of the intemal structure of these relation forming concepts. Concepts

can divide and combine to form other concepts. A concept can split

into two copies or spread into two different concepts. Also, two

copies of a concept can join into a single copy or two different

concepts can merge into a single concept. This capability of IDEF0

allows complex relationships between activities to be represented.

Figure 3.6 shows an example of concepts spreading, splitting, join-

ing, and merging.

A
C-(AUB) f B

A

f

A J A
v

^ \ A

B \C-fAt!_l

Figure 3.6 ICOM Spread, Split, Joint, and Merges

Analysis of Methods 26

Final Report IDEF0

3.3 Metamodel

The following is a discussion of the IDEFI metamodel of IDEF0. The

metamodel is intended to capture the information managed in an

IDEF0 model. Syntactic structures which can be directly generated

from this information are not included in the metamodel. Therefore,

for example, there will be no references to arrows in the metamodel

since they can be reconstructed knowing the relations between the

activities, and what concepts form these relations. Similarly the

derivable information such as ICOM codes and activity numbers do

not appear in the metamodel. These are artifacts of the diagram and

not part of the information that is modeled. Also, the metamodel does

not attempt to model real world processes described by an instance

of an IDEF0 model. It models only the information managed in the

method.

The IDEFI metamodel of IDEF0 as shown in Figure 3.7 will be

divided into four logical units to facilitate the discussion of the

Figure3.7IDEF1 Metamodel ofIDEFo

Analysisof Methods 27

Final Report IDEFo

Analysis of Methods

metamodel. The first logical unit will cover activities and the decom-

position of activities. Next, the idea of structures and concepts will

be introduced. Next, links will be presented. Finally, the idea of links

and paths will be discussed.

3.3.1 Activities and Decompositions

The metamodel portion for activities and decomposition is shown in

Figure 3.8. In IDEF0 an activity carries the information relative to

the environment (the model at the most abstract level) in which it

belongs. Each activity may or may not have a decomposition as

represented by the one-to-zero-or-one link class from the ACITV1TY

entity class to the DECOMPOSITION entity class. The key class of

the parent activity of the decomposition serves as the key class of the

DECOMPOSITION entity class.

&Clair _ Ceqa_-i

_D_r C_sl

<

AC'T _c_l_I_C

[CmlIBIt)

!t1111

[,,_.,,,.,m_v-, [,

Figure 3.8 Metamodel of Activities

Each activity may participate in one and only one decomposition.

This is because, by definition, an IDEF0 model is a rooted acyclic

tree with the root activity not occuring in any decompositions. Thus,

the one-to-zero-or-one link class from the ACTIVITY entity class to

the ACTIVITY_occ_i_DEC (activity occurrence in decomposition)

entity class represents the fact that an activity may or may not be

contained in a decomposition.

The strong one-to-many link class from the DECOMPOSITION

entity class to the ACTIVrVY_occ_i_DEC entity class represents the

fact that if an activity has a decomposition then the decomposition of

the activity must contain between three and six activities. This

constraint is represented by the following ISyCL statement:

for_all d of entity_class DECOMPOSITION
(3 <- (length (contains(d)))) and ((length (contains(d))) <,. 6)

3.3.2 Struclures and Concepls

In trying to model the spreads, splits, joins,and bundles in IDEF0, a
new construct called a structure was introduced into the model. The

small numbered squares in Figure 3.9 represent structures. Every

spread, split, join, and merge occurs at a structure. Structures are

28

Final Report IDEFo

!

I.A

Figure 3.9 An example of structures

connected by links which, when chained, form a path between

activities. Structures also occur at boundaries of a decomposition

diagram to model flows into and out of the decomposition. Thus, all

paths begin and end at a structure that is located at an activity or on

the boundary of a decomposition.

Concepts are modeled by the CONCEPT entity class as shown in

Figure 3.10. The CONCEPT entity class has an owned attribute class

__of

eec_l im' _

N_

(¢_nl)

_m0W'y -T_a

1'

-1m of

eccln-nt C_,Ne_t

ecemvml_ oq

CO_CEVT In_SYl_

eomJm/

eommat oq

c_nta_na/

I,o

I¢II_M foglLIl_ro_ tl of

conlJ_w_r of

[,,

/
Figure 3.10 Metamodel of Concepts and Structures

Analysis ofMethods 29

Final Report IDEFo

NAME and a unique concept identifier (CID) symbol acting as the

key class for the CONCEPT entity class. In addition, a CONCEPT

entity class has an owned attribute class CONCEPT_GLOSSARY.

A concept can participate as the defining or focussing concept of zero,

one, or many structures. The defining concept is the primary concept

associated with a structure in a spread, split, join, or bundle. The

CONCEPT entity class can be associated with zero, one, or many

occurrences of the STRUCTURE entity class.

A STRUCTURE entity class also contains information about the

context (decomposition) where the structure is located and a unique

key identifying the structure (SID). In addition, a STRUCTURE

entity class contains the owned attribute class ROLE. This attribute

class specifies whether the structure is serving as a spread, split, join,

or merge. If the structure is used as a spread, split, or pass-through

(e.g., as in tunneling), the defining concept is the concept entering

the structure. If the structure is used as a join or merge then the

defining concept is the concept leaving the structure.

The concepts defined by the focus concept of a structure are modeled

by the CONCEPT in STR (concept in structure) entity class. Since

the same concept may exit or enter a structure multiple times, the key

class of the CONCEPT in STR contains the focus concept identifier,

the structure identifier, and a unique occurrence number. For exam-

ple, a "distribute product" activity may produce an output that links

to two activities. The output "product" may be used as input by both

a "market product" activity and a "use product internally" activity.

The final entity class CONCEPT in ENV (concept in environment)

in Figure 3.10 is used to model tunneled concepts. A tunneled concept

is one that does not exist on the parent or child (decomposition)

diagram of the current decomposition. That is, the concept skips a

level and 'tunnels' into another level. Figure 3.11 shows how tunnels

are represented graphically with tunneling into the child diagram

(signified by parenthesis on the arrows near the activity box) on the

left and tunneling into the parent diagram (signified by parenthesis

on the arrows at the ends) on the right. The key class of the CON-

Figure 3.11 ICOM Tunneling Graphical Syntax

Analysis of Methods 3O

FinalReport IDEFo --

CEPT in ENV entity class is made up of the concept identifier, the

model identifier, and the structure identifier.

3.3.3 Links

A link always starts and ends at a structure; therefore they have been

modeled by the metamodel portion shown in Figure 3.12. The LINK

entity class contains the starting and ending structures as attributes.

In addition, the LINK entity class contains an attribute indicating the

concept associated with this link. The key class of the LINK entity

class is LID which is a unique symbol to identify a LINK entity.

Figure 3.12 Metamodel of Links

3.3.4 Paths

A path relates a producer activity to a consumer activity. Each

concept plays a role in the relationship between the two activities.

The consumer role can either be a control, an input, or a mechanism.

Consequently, the PATH entity class has two weak one-to-many link

classes with the ACTIVITY entity class as shown in Figure 3.12. The

links represent the producer and consumer activities for this path. The

producer and consumer of the path are kept as attributes of the PATH

entity class along with an attribute containing the consumer role of

the path. Since multiple paths can exist between two activities, the

key class of the PATH entity class is made up of a unique symbol

(liD).

L,,_ IJ_'n'_'_' I _

Acllvt__Ol_ ACTll • C_ Cm_mlr R_

I*g'l I$ cofl_lmtr In/] |

,_,emamm=of

Figure 3.13 Metamodel of Paths

Additionally, Figure 3.14 shows the portion of the metamodel that

describes how a collection of links make up a path. Since a link can

be a part of many paths (consider a concept flow before it spreads

into two separate concepts), the LINK_occ_i_PATH (link occur-

Analysis of Methods 31

FinalReport IDEFo

Analysis of Methods

C_m_ $tt_
Canl_rmn_R ok F_I

PATH 1:3 LINK o__i_,ATH I' LINK 18

Figure 3.14 Metamodel of Link occurrences in Path

rence in path) entity class is used to represent the situation in which

a link is used as part of a path.

3.4 Strengths and Weaknesses of IDEF0

The primary strength of IDEF0 is that the method has proven effective

relative to its original structured analysis communication goals for

function modeling. Activities can be described by their inputs, out-

puts, controls, and mechanisms. Additionally, the description of the

activities of a system can be easily refined into greater and greater

detail until the model is as descriptive as necessary for the decision

making task at hand. In fact, one of the noticed problems with models

created using IDEF0 is that they often are so concise that unless a

reader is an expert in the domain or participated in the model

development he (she) will not be able to understand the system that

is modeled in the diagrams. The hierarchical nature of IDEF0 facili-

tates the ability to construct ("AS IS") models which have a top-down

representation and interpretation but which are based on a bottom-up

analysis process. Beginning with raw data (generally interview re-

suits with domain experts) the modeler starts grouping together

activities that are closely related or functionally similar. Through this

grouping process the hierarchy emerges. If an enterprise functional

architecture is being designed (often referred to as "TO-BE" model-

ing), top-down construction is usually more appropriate. Beginning

with the top-most activity, the "TO BE" enterprise can be described

via a logical decomposition. The process can be continued recur-

sively to the desired level of detail. When an existing enterprise is

being analyzed and modeled, observed activities can be described

and then combined into a higher level activity. This process also

continues until the highest level activity has been described.

One problem with IDEF0 is the tendency of IDEF0 models to be

interpreted as representing a sequence of activities. While IDEF0 is

not intended to be used for modeling activity sequences, it is easy to

do so. The activities may be placed in a left to right sequence within

a decomposition and connected with the flows. It is natural to order

the activities left to right because if one activity outputs a concept

that is used as input by another activity, drawing the activity boxes

and concept connections is clearer. Thus, without intent, activity

sequencing can be imbedded in the IDEF0 model. In cases where

32

Final Report IDEFo

activity sequences are not included in the model, readers of the model

may be tempted to add such an interpretation. This anomalous

situation could be considered a weakness of IDEF0. However, to

correct it would result in the corruption of the basic principles on

which IDEF0 is based and hence lose the proven benefits of the

method. The abstraction away from timing, sequencing, and decision

logic allows the conciseness in an IDEF0 model. It also contributes

to problems with understanding by readers outside the domain. This

particular problem has been addressed with a complementary mod-

eling method called IDEF3.

3.5 Integration With Other Methodologies

The IDEF0 method metamodel is in the process of being integrated

with several other method metamodels. The final result of this

integration is incomplete, but some discoveries have been made. The

metamodels for IDEF0 and Data Flow Diagrams are very similar even

though the purpose of the two methods is very different. IDEF0 is

intended to model activities while Data Flow Diagrams are intended

to model the flow of information. However, it turns out that the

information used by each of the methods is quite similar in structure.

This similarity will require careful analysis to determine exactly how

similar the metamodets are and how they may overlap.

As a counter example, IDEF0 and Structure Charts are two methods

that are also very similar in purpose. Their metamodels, however, are

not alike at all. Structure Charts model the hierarchy of processes but

do not represent their interconnectivity. While IDEF0 also represents

hierarchical decomposition, its metamodel contains much more in-

formation about the activities by virtue of the inclusion of concept

flows. Integration of these two methods will also require careful

analysis, but will likely have large parts of the metamodel that do not

overlap.

3.6 Conclusions

This chapter has presented a brief description of the IDEF0 modeling

method. Also, an IDEFI model of IDEF0 has been described. By

carefully describing the IDEF0 metamodel, it is hoped that the

information used by IDEF0 can be integrated with the information

used by other modeling methods. Current work by the IDSE research

team is progressing towards this goal.

Analysis of Methods 33

FinalReport IDEFo

Appendix A. Abbreviations used in the IDEF0 Melamodel

Activity: an entity class.

Activity_Glossary: owned attribute class of Activity, a glossary entry

which carries information about the activity and it's function.

Activity_OccI_Dec: Activity Occurrence [.n Decomposition; an en-

tity class.

ACT#: ACTivity number; occurs in the key class of Activity,

uniquely identifies an activity.

CID" Concept IDentifier; occurs in the key class of Concept, uniquely

identifies a concept.

Concept. an entity class.

Concept_Glossary: owned attribute class of Concept, a glossary entry

which carries information about the concept and it's function.

Concept In Env: an entity class.

Concept In Str: an entity class.

Context: the key class of the parent activity of the decomposition,

which serves as the key class of Decomposition.

Consumer: attribute class of Path which identifies the consumer

activity.

Consumer Role: attribute class of Path which identifies the role the

consumer activity plays.

Decomposition: an entity class.

End: attribute class of Link which identifies the ending structure.

Environment:. attribute class which carries information relative to the

environment (the model at the most abstract level) in which the

activity belongs.

Explanatory_Text. attribute class of Decomposition containing doc-

umentation on this entity class.

LID: Link IDentifier: occur,_ in the key cla_ of lank. uniquely
identifies a link.

Link: an entity class.

Link_Occ_l_Path: Link Occurrence In Path; an entity class.

Model: an entity class.

MID: Model ID_._entifier; occurs in the key class of Model, partially
identifies a model.

Analysis of Methods 34

Final Report IDEFo --

Name: attdbute class of Concept which captures the name of the

concept.

Path: an entity class.

PID: Path IDentifier; occurs in the key class of Path, uniquely

identifies a path.

Producer: attribute class of Path which identifies the producer activ-

ity.

Role: attribute class of Structure which identifies whether a structure

serves as a spread, split, join or merge.

SID: Structure ID__entifier; occurs in the key class of Structure,

uniquely identifies a structure.

Start: attribute class of Link which identifies the starting structure.

Structure: an entity class.

Analysis ofMethods 35

FinalReport IDEFo

References

Buffum, H,.E,"Air Force Computer-Aided Manufacturing

(AFCAM) Master Plan", Volume HI Analytic Tools, AFML-TR-

74-104, AFWAL/MLT, WPAFB, OH, 45433.

Ross, Douglas T., "PLEXl: Sameness and the need for rigor, and

PLEX2: Sameness and type" Internal Technical Report, Softech

Inc., 1975.

Ross, Douglas T., "Software Engineering: Process, Principles, and

Goals", Computer, May 1975.

Ross, Douglas T., "Structured Analysis(SA): A Language for Com-

municating Ideas", IEEE Transactions on Software Engineering,

January 1977.

SofTech,"Integrated Computer-Aided Manufacturing (ICAM) Func-

tion Modeling Manual (IDEF0)", Technical Report UM

110231100, June 1981.

Analysis of Methods 36

4

ENALIM: Conceptual Schema Design

his chapter serves a dual purpose. First, it attempts to describesuccinctly the Evolving NAtural Language Information Model

(ENALIM) by discussing the history, purpose, syntax, semantics,

advantages, and disadvantages of the method. Second, this chapter

serves as an integration pl.atform by presenting an Integrated Com-

puter-Aided Manufacturing (ICAM) DEFinition (IDEF) language

IDEF1 metamodel of ENALiM and compares common structures of
its metamodel with the metamodels of other methods which include

IDEF0, IDEFI, IDEFIx, ER, and Data Flow Diagrams.

4.1 H istory and Purpose

An information system consists of three major components:

• functions that retrieve, add, delete, and modify the information
base.

• an information base that stores facts about the information sys-
tem.

a conceptual schema that contains the rules that describe which

information may enter and reside in the information base. It also

describes the semantics of the elements in the information base.

A general architecture for an information system [ISO 82] is shown

in Figure 4.1. The information system receives a message. The

message can either retrieve, add, modify, or delete a piece of infor-

mation from the information base. The information processor re-

ceives the message. The conceptual schema controls the information

processor by describing the allowable sentences which may enter the

information base. Finally, the information base generates an appro-

prime message describing the contents of the information base.

Analysis of Methods 37

_ FinalReport ENALIM

(--(m

l
WqNNm¢

(--(tmD

Figure 4.1 A General Information System

In the middle 1970's, Dr. G. M. Nijssen, head of the Intemational

Federation of Information Processors (IFIP), developed the concept

that information systems are a simplified model of .human commu-

nication. Consequently, the communication between the environ-

ment (the user or application) and the information system can be

viewed as a set of natural language sentences for analysis purposes.

Using this idea, Nijssen developed the modeling technique of EN-

ALIM for capturing the information needed to design/populate con-

ceptual schemas. ENALIM (today referred to as the Object Role

Method) is available today as a part of an information analysis

methodology called NIAM (Nijssen Information Analysis Method-

ology).

4.2 Syntax and Semantics

An ENALIM model is made up of three constructs: l)object types,

2) fact types, and 3) constraints. An object type is a collection of

objects grouped together in order to be compared. Object types can

be further classified as NOLOTs (NOn Lexical Object Types) and

LOTs (Lexical Object Types). These two classification will be de-

scribed in more detail in sections 4.2. I and 4.2.2, respectively. A fact

type, which is an association (fact) between two objects, will be

described in section 4.2.3. In addition, the constraints (integrity rules)

which place restrictions on the population of object types and fact

types have been divided into two sections: role constraints and

subtype constraints. They will be discussed in section 4.2.4 and

section 4.2.5, respectively.

4.2.1 NOLOT (NOn Lexical Object Type)

A NOLOT is an ENALIM object type which denotes a concept or

physical object perceived in the universe of discourse but which

cannot be directly processed by an information system. The real

world objects represented by NOLOTs are presumed to have an

Analysis of Methods 38

FinalReport ENALIM

existence independent from a particular naming convention. (i.e. they

are not readable or printable). A NOLOT is represented graphically

by a circle containing the name (Figure 4.2).

@ @ @
Figure 4.2 Examples of NOLOTs

Two NOLOTs can be related by a subtype ("is a") link. A subtype

link is represented graphically by a directed line segmem pointing

from the subtype to the supertype. The interpretation of the subtype

link is that instances of the subtype are instances of the supertype. An

instance of the subtype inherits all of the properties of the supertype.

The subtype link structure resulting from a model must be acyclic,

hence it forms a tree structure. If a tree is made up of n NOLOTs,

then the tree is called an n-NOLOT family. A 3-NOLOT family is

shown in Figure 4.3.

Figure 4.3 An example of a 3-NOLOT family

4.2.2 LOT (Lexical Object Type)

A LOT isan ENALIM object type that represents a real world object

which can be passed to and from the information system. This implies

that objects represented by LOTs are processable (readable and

printable) by the information system. A LOT can refer to, identify,

or name a NOLOT. A LOT is represented graphically by a dashed

circle containing the name of the LOT as in Figure 4.4.

4.2.3 Fact Types

A fact type is an association (fact) between two object types. Each

object type in a fact type association is said to play a role. A fact type

Analysis of Methods 39

Final Report ENALI M _

t _ / Social _

I Family _ I Security _
I Name I I Number I

Figure _4 Examples of LOTs

is graphically represented by two adjacent rectangles with a line

extending from each rectangle to the object associated with the role

contained in that rectangle. The only allowable fact types are idea

types and bridge types. An idea type is a fact type between two

NOLOTs (Figure 4.5). A fact type between a NOLOT and a LOT is

called a bridge type, as shown in Figure 4.6.

h_b_d J w_

Figure 4.S An example of an idea type

/ Social x

with of I Security _
I Number I

/

Figure4.6An exampleof abridgetype

4.2.4 Role Constraints

The role constraints place restrictions on the population of object

instances for a particular set of roles. The role constraints are the

identifier, role uniqueness, total role, role equality, role exclusion,
and role subset constraints. These role constraints will be discussed

in sections 4.2.4.1 through 4.2.4.6.

4.2.4.1 Identifier Constraint

An identifier constraint (uniqueness constraint or "only one" con-

straint) declares that a set of object role pairs uniquely identifies an

instance of the fact type. An identifier constraint is graphically

represented by a dashed line with arrows on both ends ranging over

a set of roles in a fact type. In the simple case of binary relationships,

four types of identifier constraints are possible: 1) one-to-one, 2)

synonym, 3) homonym, and 4) syno-homonym.

Analysis of Methods 40

Final Report ENALIM

The one-to-one identifier constraint declares that either object in-

stance in the constrained fact type can be used to identify the other

object instance, and vice versa. In other words, there exists a one to

one relationship of an object instance of one role to an object instance

of another role, as depicted in Figure 4.7.

<..... -X ->

Figure4.7 A man andawoman pa_cipateinonlyonemar-

riage(monogamy).

The synonym identifierconstraintstatesthatan objectinstanceofthe

f'u'stroleuniquely identifiesan objectinstanceof the second role.

Consequently, the synonym identifierconstraintrepresentsa one to

many relationshipfrom thefirstobjecttypeto thesecond objecttype

(Figure4.8).

<.....->

Figure4.8 A man canhavemultiplewives,andawoman
canhaveonlyonehusband(polyandry).

The homonym identifier constraint asserts that an object instance of

the second role uniquely identifies an object instance of the first role.

As illustrated in Figure 4.9, a many to one relationship exists between

the object type MAN and the object type WOMAN.

<..... ->[husband[wife

Figure 4.9 A woman can have multiple husbands, and a
man can have only one wife (polygyny).

Finally, the syno-homonym identifier constraint states that neither an

object instance of the first role nor an object instance of the second

role is enough to identify the other object instance. The syno-hom-

onym identifier constraint represents a many to many relationship

from the f'trst object type to the second object type as shown in Figure
4.10.

Analysis of Methods 41

Final Report ENAL1M

I

Figure4.10 A man andawoman may participateinmultiple
marriages(polygamy).

4.2.4.2 Role Uniqueness Constraint

The role uniqueness constraint specifies that the combination of two

or more roles uniquely identifies an object. The role uniqueness

constraint is graphically represented by the letter"U" inside of a circle

with dashed lines extending from the circle to each role participating

in the constraint. As depicted in Figure 4.11, the first name and the

last name uniquely identifies an employee.

with of

t \

: Firstl Name !

! %' ..,..,..J

with l of I I Last 'I Name !

Flgure 4.11 A roleuniqueness constraint example

4.2.4.3 Total Role Constraint

The total role constraint ("always" constraint) states that there must

be an instance of the role for every object type playing that role. This

constraint is represented graphically by the universal quantifier sym-

bol appearing on the line between the object type and its role. The

total role constraint that a person always has a gender is represented

in Figure 4.12.

V whh of I Gender I

Figure 4.12 A total role constraint example

4.2.4.4 Role Equality Constraint

The role equality constraint states that the set of instances of two roles

must be equivalent. The role equality constraint is graphically repre-

Analysis of Methods 42

Final Report ENALIM

sented by the equal sign, "=", inside of a circle in the middle of a

dashed line segment connecting two roles. An example of a role

equality constraint is represented in Figure 4.13, which states the set

of employees working for a department is equivalent to the set of

employees earning a salary.

<..... -> @working for I employing I
!

6

' @!

earns I ispaidto l

<..... ->

Figure 4.13 A role equality constraint example

4.2.4.5 Role Exclusion Constraint

The role exclusion constraint prescribes that the set of instances of

two roles must be mutually exclusive. In other words, an instance of

one role cannot appear as an instance of another role. The role

exclusion constraint is represented graphically by the letter "X"

inside a circle in the middle of a dashed line segment connecting the

two roles. As depicted in Figure 4.14, the set of persons earning a

salary is disjoint from the set of persons owning a shop.

earns [is paid to
!

!

®
I

I

owning owner

Figure 4.14 A role exclusion constraint example

4.2.4.6 Role Subset Constraint

The role subset constraint states that tlae set of instances of one role

must be a subset of the set of instances of another role. The role subset

constraint is represented graphically by a directed dashed line seg-

Analysis of Methods 43

Final Report ENALIM

Analysis ofMethods

ment pointing from the subset to the superset. In Figure 4.15, the

example states that the set of employees assigned to a project is a

subset of the set of employees working for a department.

working for [employing [
!

l

assigned to] done

<..... ->

Figure 4.1S A role subset constraint

4.2.5 Subtype Constraints

Subtype constraints restrict the population of the object instances of

a supertype into populations of the participating subtypes. The two

types of subtype constraints are the subtype exclusion constraint and

the subtype total constraint. These constraints will be discussed in

section 4.2.5.1 and 4.2.5.2, respectively.

4.2.5.1 Subtype Exclusion Constraint

The subtype exclusion constraint declares that the set of instances of

one subtype are mutually exclusive from the set of instances of

another subtype. In algebraic terminology, the intersection of the set

of instances of one subtype with the set of instances of another

subtype is the empty set. The subtype exclusion constraint is repre-

sented graphically by the letter "X" inside a circle with dashed line

segments connecting the circle to each subtype link participating in

this constraint. As illustrated in Figure 4.16, the subtype man of

person is mutually exclusive from the subtype woman of person.

Figure 4.16 Subtype exclusion constraint example

44

Final Report ENALIM

4.2.5.2 Subtype Total Constraint

The subtype total constraint states that the total of all of the instances

of one subtype with all of the instances of another subtype make of

the set of instances contained in the supertype. In algebraic terminol-

ogy, the union of the set of instances of one subtype with all of the

instances of another subtype make up the set of instances contained

in the supertype. The subtype total constraint is graphically repre-

sented by the letter "T" inside of a circle with dashed line segments

connecting the circle to each subtype link participating in the con-

straint. An example of a subtype total constraint is the population of

men and the population of women which together make up the

population of the supertype people, as depicted in Figure 4.17.

Figure 4.17 A subtype total constraint example

4.3 Metamodei

This section describes an information model of ENALIM (Fig-

ure 4.18). IDEFI is used to model the information contained in an

ENALIM model. This information model is referred to as a

metamodel. To facilitate the explanation process, the metamodel has

been divided into five logical units: 1) NOLOT families, 2) fact types,

3) total role constraints, 4) subtype constraints, and 5) role con-

straints. The following sections fully describe each of these logical
units.

4.3.1 NOLOT Families

The portion of the metamodel that models NOLOT families is shown

in Figure 4.19. The entity class OBJECT keeps all of the information

about objects. The attribute class OTYPE specifies whether the object
is a LOT or a NOLOT. The attribute class ONAME is the name of

the object and acts as the key class for this entity class. An additional

Analysis of Methods 45

Final Report ENALIM

JOrm) I'P'_'a=_-_/

L(SClO)

s_'rYPIE_CONST I9

Figure 4.18 IDEFi Metamodel of ENALIM

:_u_clu J__luJ_of

O_ n Olalm

ONKIta. _

am_m a,t...la_ _md,d_:lm,_d

Figure 4.19 Metamodel of NOLOT families

constraint is required to prevent LOT participation in subtype rela-

tions. This constraint is represented by the following ISyCL state-
ment:

for_all s of entity_class SUBTYPE
(OTYPE(class_of(s)) - 'NOLOT)
and

(OTYPE(subclass_of(s)) - 'NOLOT)

The entity class SUBTYPE has as its key class the name of the two

NOLOTs contained in this subtype link. This implies that only one

subtype link can exist between two individual NOLOTs. An addi-
tional link constraint is needed to state that a NOLOT cannot be a

subtype of itself and that no matter what NOLOT you visit in a

NOLOT family, a path will not exist along the subtype links that will

return to the starting NOLOT. In other words, a NOLOT family is a

directed acyclic graph. These constraints are represented by the

following ISyCL statements:

Analysis ofMethods 46

Final Report ENALIM

function superclass?(obj 1, obj2):boolean
"Is OBJ2 a superclass of OBJ1 ?"

[(objl <> obJ2)
and
(for_some s of entity_class SUBTYPE

(class_of(s). objl)
and
(subclass_of(s) = obj2))

and
(for_some s of entity_class SUBTYPE where (class_of(s) = objl)

superclass?(subclass of(s), obJ2))]

for_all s of entity_class SUBTYPE
"No non-acyclic graphs"
not (superclass?(subclass_of (s), class_of(s)))

4.3.2 Fact Types

As shown in Figure 4.20, every object in a model belongs to at least

one object role pair (OBJECT_ROLE_P). The entity class OB-

JECT_ROLE_P contains the object name, ONAME, and the role

name, RNAME, belonging to this OBJECT_ROLE_P. An entity of

the entity class OBJECT_ROLE_P is identified by the key class PID,

which is a unique symbol. A fact type is made up of two object role

pairs. Each fact type has an identifier-type attribute class whose

attribute value may be either one-to-one, synonym, homonym, or

syno-homonym. A link constraint exists that states that the object

type of the two object role pairs participating in a fact type cannot

both be LOTs. The orgy allowable combinations are between a

NOLOT and a LOT, which is called a bridge type, or between two

NOLOTs, which is called an idea type. This constraint is represented

by the following ISyCL definition:

for_all f of entity_class FACT_TYPE
not(for_all p in contains(f, OBJECT_ROLE_P)

(OTYPE(ONAME(p)) = 'LOT))

Figure 4.20 Metamodel of fact t}Tes

4.3.3 Total Role Constraint

The total role constraint is modeled by the one-to-zero-or-one link

class from entity class OBJECT ROLE_P to the entity class

47Analysis of Methods

Final Report ENALIM

TOTAL_ROLE_C (Figure 4.21). The total role constraint is modeled

as a separate emity class to avoid violating the no null role of IDEF I,

because not every OBJECT_ROLE_P has a total role constraint. The

key class of the total role constraint is the key class of the OB-

JECT_ROLE_P that it is associated with it.

I [OqD)

D) ,p,,,aa.d _/o.o__o¢ [(ONAM_ne,

Figure 4.21 Metamodel of total role constraint

4.3.4 Subtype Constraints

The subtype constraints of subtype exclusion and subtype total have

been modeled in Figure 4.22. Since a subtype link can appear in

muhiple subtype constraints and a subtype constraint is made up of

multiple subtype links, the entity class ST u i STC (subtype use in

subtype constraint) was added to the model.

,.btyp*_of q L_cm'mm'e-_ SC_TYPE

SI3BTYPE CONST [9

Figure 4.22 Metamodel of subtype constraints

4.3.5 Role Constraints

The role constraints are modeled in Figure 4.23. The role constraints

include the joint uniqueness, role equality, role exclusion, and role

subset constraints. The entity class ORP u i RC (object role pair

used in role constraint) shows the pairwise relationship between a

role constraint and each object role pair participating in this role

constraint. This entity class was added to the model since an object

role pair can participate in many role constraints and a role constraint

is made up of many object role pah's.

Colsao'l_lt_¢y_ congtcaintd b) e(curvcnce of

I _.OL:E_L-'ON b"T I' O4RP_u_i_l_C]g

I WtD)
iONAME.RNAME.

FTID]

OBIq_CT_ROLE P]._

Figure 4.23 Metamodel of role constraints

Analysis of Methods 48

Final Report ENALIM

4.4 Strengths and Weaknesses

Possibly the greatest strength of ENALIM is the fact that it embodies

a representation of both the real world objects and their relations

along with the data objects and relations into a single integrated

syntax. If one takes the meaning of "semantic data model" to be the

documentation of the link between the data in an information system

and the "things"/"situation" represented by that data in the real world,

then ENALIM is the only method we have studied that actually

captures both aspects unambiguously.

IDEFI clearly distances itself from the representation of objects in

the real world (i.e. entity classes like "employee" do not represent

real world people but other collections of information presumably

about the real world object named by the entity class). Both IDEFIx

and FaR conflate the two, thus making it impossible to tell if an

"entity" (in IDEFlx) or an "entity set" (in ER) is intended to represent

the object itself or the information about that object. ENALIM, with

its clear distinction between LOTs and NOLOTs was the first (and

to date only) method to grapple with trying to simultaneously repre-

sent and keep both corlcepts distinct.

ENALIM's strength resides in the fact that it is based on the deep

structure of sentences. The rich set of constraints gives ENALIM the

ability to capture all nuances of a sentence. In addition, all the

sentences and constraints of ENALIM have a graphical notation with

text needed only in rare occasions.

Being first is not always an enviable position. ENALIM does suffer

from a bit of impoverishment in its ability to describe situations in

the real world component. Deficiencies in the information modeling

component have been addressed with subsequent IDEFI like addi-

tions under the NIAM method set. However, major deficiencies in

the real world component relative to representing abstractions, tem-

poral relation, def'mite descriptions, and others have received little
formal treatment.

The lack of a focusing mechanism is ENALIM's primary deficiency.

Instead of being able to describe details of a portion of the model and

then hide these descriptions at a higher level of abstraction, the model

is made up of only one level of detail. Therefore, models tend to

explode in size and becomes unmanageable even with currently

available automated tools. The above developed information

metamodel of ENALIM will be used to provide some insight into

ways of alleviating this problem.

Analysis of Methods 49

Final Report ENALIM

4.5 Tips and Traps

The main trap analysts tend to fall into is that they do not constrain

the enterprise they are modeling. Therefore, the models tend to

become extremely large. Consequently, an ENALIM model must be

properly focused on the information system to be modeled. This will

decrease the model size and corresponding complexity.

4.6 Integration With Other Methodologies

The IDSE Research Team is currently looking for commonality

among the previously mentioned methods based on each methods'

metamodel. Once the equivalent model constructs can be determined,

a neutral information representation schema will be developed. At

this writing, we are still in the process of dete_g the common

constructs across the different methodologies.

4.7 Conclusions

A concise description of the ENALIM methodology has been in-

cluded to aid in the description of the IDEFI metamodel of ENALIM.

This metamodel serves as the basis from which integration decisions

concerning ENALIM will be derived. Additional benefits of the

metamodel include: 1) providing a less ambiguous understanding of

the methodology among the team members, 2) providing a common

reference point for the team from which decisions can accurately be

made concerning integration, and 3)providing an initial platform for

the development of integration techniques.

Analysis of Methods 50

Final Report ENALIM

Appendix A. Abbreviaiions used in ihe ENALIM Melamodel

Class: inherited attribute which partially identifies a subtype.

Constraint-Type: attribute which describes the type of constraint.

Codomain: joint uniqueness, role equality, role exclusion and role

subtype constraint.

RCID: Role Constraint ID.._entifier; uniquely identifies Role-Con-

straint.

Fact-Type: an entity class which describes the association between

two objects.

Identifier-Type: attribute which specifies the categories of identifier

constraints. Codomain: one-to-one, synonym, homonym and syno-

homonym.

Object: an entity class which keeps information about object types.

Object-Name: occurs in the key class of Object, uniquely identifies

the object.

Object-Role-Pair. an entity class describing the role an object plays
in a relation.

Object-Type: attribute which specifies the type of object - LOT or
NOLOT.

ORP-u-i-RC: O_bject Role Pair used in Role Constraint; an entity
class.

PID: Pair IDentifier; uniquely identifies Object-Role-Pair.

Role-Constraint. an entity class which describes constraints on the

object instances for a set of roles.

Role-Name: attribute which identifies the role an object plays in

Fact-Type.

SCID: _ubtype Constraint LDentifier; occurs in the key class of

Subtype-Constraint, uniquely identifies Subtype used in Subtype
Constraint.

ST-u-i-STC: S_ubType use in SubType Constraint: an entily class.

Subclass: inherited attribute which partially identifies a subtype.

Subtype: an entity class which describes the subtype link.

Subtype-Constraine an entity class which identifies the type of

constraint placed on the subtype.

Total-Role-Constraint: an entity class.

Analysis of Methods 51

FinalReport ENALIM

References

Nijssen, G. M., "The Next Five Years in Data Base Technology",

Paper presented at: Infotech State of the Art Conference, Regent

Centre Hotel, London, 12-14 December 1977.

Nijssen, G. M., "On Conceptual Schemata, Databases, and Informa-

tion Systems", Preliminary Version, Paper presented at: Data

Bases - Improving Usability and Responsiveness, August 2-3,

1978, Haifa, Israel.

ISO, Concepts and Terminology for the Conceptual Schema and the

Information Base edited by J. J. van Griethuysen, March 15,
1982.

Nijssen, G. M., Informatie Analyse en Data Bases 82, Universiteit

van Queensland, Brisbane, Australie, December 1982.

Nijssen, G. M., De Productieve Combinatie ISAC + NIAM = 3,

Universiteitvan Queensland, Brisbane, Austriale, December

1982.

Thompson, Paul, "Natural Language Analysis, Information Model-

ing, and Database Engineering", Control Data Corporation, Min-

neapolis, Minnesota, February 14, 1985.

Van Assche, F., "Some Natural Extensions to NIAM", International

Center for Information Analysis Services, Control Data Belgium,

Inc., September 1985.

Analysis ofMethods 52

5

IDEF1 x: Data Modeling

Analysis of Methods

ata modeling is one facet of the overall Information Systems
Architecture (ISA) development scheme. Several methodolo-

gies for data modeling, including the Integrated Computer-Aided

Manufacturing (ICAM) DEFinition (IDEF) language IDEFIx,

Chen's Entity-Relation (ER) [Chapter 6], and Nijssen's Evolving

NAtural Language Information Model (ENALIM) [Chapter 4], have

emerged over the past fifteen years. Historically, data modeling was

introduced for database design. Consequently, the developers of

these methodologies have been influenced by the needs of a database

designer. The metamodel of IDEFIx presented in this chapter was

developed as part of an effort to integrate a complete set of ISA

modeling methods. The metamodel can also be used to aid in under-

standing the basic concepts and principles of the methodology and to

contrast IDEFIx with the other data modeling methodologies.

5.1 History and Purpose

A methodology is a language system. Like any other type of system,

there are many different methodologies for various purposes. There

are currently three primary IDEF methodologies: IDEF0, IDEFI, and

IDEFIx. There is also IDEF2 which was developed to support simu-

lation modeling. It has largely been replaced by commercially avail-

able simulation modeling systems. IDEF0 is used to model activities

and the relations between activities. IDEFI models the logical struc-

tures of the information in a system. Finally. IDEFIx was introduced

to model the data kept about entities within a system for the purpose

of conceptual schema design for three schema database systems as

defmed by the ANSI SPARC report on database management sys-

tems [DACOM 85, ANSI 75]. Note that this is not the same as

conceptual schema design for the conceptual information processor

integration concept as defined in the ISO report [ISO 87].

53

Final Report IDEFIx

I$0 Conceptual.SchemaArchitecture

Because of the name, IDEFlx is often thought of as an extension to

IDEF1. In actuality, the two are complimentary. IDEFIx picks up at

the data design point after the information requirements (expressed

in IDEFO are complete. The developers of IDEFIx did not simply
extend IDEFh but instead started from different foundations. For

example, as stated in [DACOM 85] IDEFlx entities correspond to

"things about which data is kept, e.g. people, places, ideas, events,

etc.", in contrast to the IDEFI entity which corresponds to "logical

information managed in the organization." We have used IDEF1 as

our metamodeling language for this analysis effort since we must do

an information level integration of the methods prior to doing a

logical database design. As the IDEFI model of IDEFIx is developed

later in the paper, the differences between the two methodologies will
be demonstrated.

The primary reference for IDEFlx is the Integrated Information

Support System (rISS) report prepared for General Electric by the D.

Appleton Company [DACOM 85]. That report provides a brief

history, a thorough review of the syntax and practice, and then a

detailed description of how to build an IDEFIx model. A formal

theoretical foundation (syntax and semantics) for the method was

published in an Integrated Information Systems Evolution Environ-

ment (IISEE) Report [Mayer 88].

Analysis of Methods 54

Final Report IDEFIx

The purpose of this report is not to duplicate what was done in the

previous reports, but instead to describe the information managed

within an IDEFIx model by building an information model of it. The

purpose of this metamodel is to provide the basis for determining how

to integrate IDEFlx with other modeling methodologies. Until mul-

tiple methodologies can be integrated, there cannot be a coherent

framework for system development or a truly useful integrated

development support environment.

5.2 Syntax and Semantics

There are two stages of learning to model. The first is learning the

syntax and semantics of the modeling methodology. This is usually

done by having an expert teach a short course. On the other hand,

since the IDEF methodologies are syntactically .easy to learn, it is

possible to learn their syntax independently. The following section

should go a long ways toward that goal for those unfamiliar with the

IDEFIx method.

Once the syntax and semantics axe understood, the hard part begins

(which is generally the reason for engaging an expert). Modeling can

actually be considered an art. It generally requires a large amount of

considered judgement. It is easy to create a meaningless (or blatantly

wrong) model. Each step of the modeling process, particularly the

model validation, needs to be followed carefully, so that the com-

pleted model is consistent. It is beyond the scope of this work to teach

proper modeling techniques, but where possible tips will be given. It

is also a goal of the IDSE Project to develop tools that will aid in

checking the semantics of a model.

5.2.1 Entities

Entity/#

IPrimary-Key

Alternate-Keys

Attributes

Identlfier.IndependentEntlty

An entity represents a set of data instances. For example, the entity

"Person" represents the data kept about people in an enterprise. The

instances could be data kept about Jim, Mary, or Bob. Similar data

are kept about each of the instances. It is important to keep in mind

that an "entity" represents sets of data, not the physical objects that
the data describes.

There are two primary types of entities, identifier-independent and

identifier-dependent. Identifier-independent entities can exist with-

out any other entities, while identifier-dependent entities are mean-

ingless without other entities. In a model of graduate students, the

student's committee is an example of an identifier-dependent entity.

The committee is dependent on the student and his or her advisors

Analysis of Methods 55

FinalReport ID EF l x _

Entity/#

_ary-Key 1temate-Keys

ttributes

IdcnOfler.DependentEntity

for its existence. Dependence and independence are s'pecific to a
model.

Identifier-independem entities are represented by rectangles with

square comers. The unique entity name is placed just above the box

along with a unique entity number. The box is divided by a solid line.

The primary set of attributes which uniquely identify the entity are

placed above the line.

Identifier-dependent entities look similar to identifier-independent

entities, except that the comers of the rectangle are rounded. Identi-

tier-dependent entities inherit at least one of their primary key

attributes from a parent entity.

5.2.2 Connection Relationships

Connection relationships show how entities (sets of data instances)

relate to one another. The relationships are always between exactly

two entities. The connection relationship starts at the independent, or

parent, entity and ends at the dependent, or child, entity. The connec-

tion relationship is labeled with a verb phrase which describes the

relationship. A filled circle is drawn at the dependent end.

The connection relationship in Figure 5.1 is called an identifying

relationship. Identifying relationships are signified by a solid line.

Non-identifying relationships are drawn as a dashed line. The child

entity in an identifying relationship must be identifier-dependent.

Parent-Entit_/#

]Descriptive Attributes ,

Child-Entity/#

verb-phrase

"----------_ Alternate-Keys

_escriptive Attributes

Figure $.1 Identifying Connection Relationship

0,I, or numy

P_
One otmmy

ZA Zero or one
[_..i

['I A
_, Ex-,-tly n

C_u,d/a_es

Each connection relationship has a cardinality. The cardinality, spec-

ifies the number of instances of the dependent entity that are related

to an instance of the independent entity. For example, an instance of

the data about a house is related to many instances of the data about

a room.

There are four different cardinality types. Relations are always drawn

starting at the independent entity. Thus, a zero-or-one relation means

that there is zero or one dependent entity for every one independent

entity.

Analysisof Methods 56

Final Report IDEFlx

I
Category-Entity/2

l_ try'Key

scriminator

5.2.3 Categorization Relationships

Up until now IDEFIx has been similar to IDEFI syntactically. Cate-

gorization relations are specific to IDEFIx. They cause models de-

veloped in the two methodologies to look quite different.

Categorization relationships allow the modeler to define categories

of objects. For instance there could be an entity named "Car" which

is the generic entity in a category showing different types of cars.

Each of the category entities must have the same primary key as

"Car". Also, there must be a way of distinguishing between the

category entities. The category entities are distinguished by a dis-
criminator attribute which must have a different value for each

category entity. The category relationship syntax is shown in Fig-
ure 5.2.

Oeneric-Entity/1

Primary-Key]

(_ Category Name

Category-Entity/3

_P_imary-gey

scriminator 1

• • @

Figure 5.2 Category Relationship Syntax

I
Category-Entity/4

_imary-Key t
Discriminator

It is important to make sure that there is a need for a category, and

that meaningless entities are not being created by mistake. Some

models have category entities which do not contain the discriminator

attribute. Though this may be reasonable in some cases, it can lead

down the path toward unnecessary entities.

An entity can act as a generic entity in many category relationships,

but an entity can only act as a category entity in one relationship.

Also, a category entity can have only one generic entity. In other

words, hierarchies must be structured so that it is not possible for an

entity to be a member of two categories.

Analysis of Methods 57

FinalReport IDEFIx

Since a category entity is only a category member, it cannot partici-

pate as a child in an identifying connection relationship. Only the

generic entity can participate in such a relation.

5.2.4 Non-Specific Relations

In the process of developing a model it is sometimes necessary to

admit not understanding the information to be modeled. By the time

the model is complete, the misunderstandings can be cleared up, and

a proper model presented. Non-specific relations are a vehicle for this

type of development.

Non-specific relations are many-to-many relations. Each end of the

relation has a cardinality. Also, two labels are placed on the link

corresponding to the two directions of the relation. For instance, if

one needed to model organizations and their members, it could be

said that an organization consists of many people and that a person

can participate in many organizations.

The same rules apply as for normal connection relations plus there is

the condition that all non-specific relations must be replaced before
release of the model.

, O
ttributes

verb-phrase/
verb-phrase

Entity/#

_:_eseripti_ Attributes

Non-Speci_cRelation

In non-specific relations, any cardinality may be used at either end

of the link, and the verb-phrase on top refers to the relationship from

left to right and the bottom verb-phrase refers to the relationship from

right to left.

5.2.5 Attributes

Attributes contain information which is used to describe an entity.

Attribute names axe unique throughout an entire IDEFIx model, and

the meaning of the names must be consistent. For example, the

attribute "color" could have several possible uses. "Color" could

mean hair color, skin color, or a color in a rainbow. Each of these

uses has a range of meaningful valued, and thus should be named

more clearly (e.g. "hair-color").

Analysis of Methods 58

Final Report IDEFIx

Hu_mcl_W_

M_q_7

l.lu_bmd,Nmme

Ro_Names

Every attribute is owned by exactly one entity. The attribute "SSN"

(Social Security Number) could be used in many places in a model

but would probably be owned by the entity "Person". Attributes axe

inherited across relations, thus they can be used in many entities other
than their owner.

Every attribute must have a value (No-Null Rule), and no attribute

may have multiple values (No-Repeat Rule). These roles enforce the

creation of proper models. If there is a situation where it seems that

one of these rules needs to be broken, then the model is likely wrong.

Attributes axe displayed inside entity boxes as shown in previous

figures.

5.2.6 Role Names

There axe cases where the same attribute will be inherited from

different relations. In such cases it is aids clarity to append a role

name to the front of the attribute name. The role name is appended

to the front of the attribute name with a period between.

For example, two people participate in a marriage, and if Name were

inherited from Person to Marriage it would be convenient to append
Husband on to the name inherited from the man and Wife on to the

name inherited from the woman.

5.2.7 Keys

A key is a grouping of attributes which uniquely identify an instance

of an entity. There axe primary and ahemate keys. Every entity has

exactly one primary key and it is displayed as the set of attributes

above the horizontal line in the entity box. Entities can also have

alternate keys which also uniquely identify the entity, but axe not used

for describing relationships with other entities.

In a connection relationship, the primary key of the parent migrates

to the child. If the relationship is a category relation, then the primary

key of the child is the same as the generic. If the relationship is an

identifying relationship then the primary key of the child must contain

attributes inherited from the parent.

Attributes which participate in alternate keys axe designated by

"(AK#)," where the # is the number of the altemate key. To fred the

attributes in an alternate key, each attribute is checked to see if it

participates in that ahemate key. Attributes may participate in many

keys, so there could be more than one "AK#" in the list beside an

attribute.

Analysis of Methods 59

FinalRel)ort IDEF l x _

Besides the fact that a key must uniquely identify an entity, all

allfibutes in the key must contribute to the unique identification

(Smallest-Key Rule). Thus, when deciding whether or not an inher-

ited attribute should be made part of a key, it must be decided whether

that attribute is necessary for unique identification. It is not sufficient

to say that it contributed to the unique identification of the parent.

There are also two dependency rules. First, there is the Fun-Func-

tional-Dependency Rule. This states that ff the primary key is com-

posed of multiple attributes, then all non-key attributes must be

functionally dependent on the entire primary key. Second, is the

No-Transitive-Dependency Rule. It states that every non-key attri-

bute must only be functionally dependent on key attributes.

5.2.8 Foreign Keys

Foreign keys are not really keys at all, but attributes inherited from

the primary keys of other entities. Foreign keys are labeled with an

"(FK)" to show that they are not owned by that entity. Foreign keys

are significant in that they show the relationships between entities.

Since entities are described by their attributes, if an entity is com-

posed of attributes inherited from other entities, then that entity is
similar to those entities.

5.3 Metamodel

In order to understand the information contained in an IDEF Ix model,

a metamodel of IDEFIx in IDEFI has been constructed. Developing

a metamodel is a tricky process. It is important to differentiate

between semantic and syntactic information. The syntax of IDEFIx

has been presented in the previous section. While the semantic rules

of IDEFIx were also presented earlier, this section will go deeper.

The metamodel contains eleven entity classes (Figure 5.3). The plan

of attack for describing the metamodel is to divide it into submodels

in order to reduce the complexity of the model. After looking at each

submodel, model-wide issues will be addressed.

5.3.1 Entity Submodel

The most important entity class is Entity. Since entities are the actual

data objects, it is intuitive that the other entity classes will be to some

degree dependent on Entity. It was stated earlier that there are two

types of entities, identifier-independent and identifier-dependent.

Being identifier-dependent means that the entity participates as a

child in at least one identifying relationship. By tracing down the

Analysis of Methods 60

Final Report ID E F l x

identified ,by/identifies

kkmfiF_.d b_denfiF_s

occmm u/occurence of

scts_u_$eneric_in/ge neric_o f

_UEN _r-°f

=EN)

(AN, UEN,OCC)

(AN,UEN, OCC) 1

Ro_e._Name

Role] 3 / \

own_'owner of

occurs _/ _ _(01_ = E_
Yoccw_nce of

discriminates/

/ _ discrimirmtor_of

OCC Urtl_l&/

occurence_of](AN, UEN,OCC

1,72 ,

contalns/contained_in _._ [(AN.UEN,OCC]6 -'--" [AOKID)IAK!9

contains/

contained in

_ ¢ltegori/.e_

9 ¢._Som=d_in / \

(EN.A_N) 1

ac__u_irdependentfmdependent of

acts___dependent/ _) @
dependent_of

ity,KID
i 0IRelation I

i_lefit_ _mugh/ i

catmes inherltance of i

I KxD) I
"--" PK I I1

inherlted_througWc suses_inherltance_o

Figure 5.3 Metamodel of IDEF1 xin IDEFI

acts_as_dependent link to Relation, it can be determined whether the

relationships in which the entity participates as a child are identifying

relationships by comparing the attributes in the key which is inherited

through the relationship (identified by KID) with the entity's primary

key.

Let us take a moment and discuss attributes in IDEFI. In the

metamodel of IDEFIx, Ent/ta, could have an attribute describing

whether it is identifier-dependent or identifier-independent. The

question to ask is whether or not that attribute would add meaningful
information to the model, In this case it would not because the

information is already represented by its link to Relation. If this

metamodel were used to implement a tool for IDEF Ix, it is quite likely

that a designer would add such a field to his data structure and

database schema to reduce the time it would take to determine an

Analysis of Methods 61

FinalReport IDEF Ix ,,.

ldenltfled_byAdenti_es

c_c,,n _/occumnoe of

(AN)

tube_ed_flu_u jll_/cuu_eu_inberltunce_o_

Figure $.4 Entity Submodel

IDEFIx entity's dependency. The current metamodel is not describ-

ing an implementation, but instead the information present in an

IDEFlx model.

The key class of Entity is "simple." Simple means that there is only

one attribute class in the key class. Every entity in IDEFIx has a

unique name, thus the entity's name is enough to uniquely identify

the entity.

Enough with the aside, let us get back to the main course. The

representation of the relationships between entities and attributes in

IDEFIx is more complex than might be expected. First, every attri-

bute is owned by exactly one entity. This relationship is described by

the link between Entity and Attribute. An entity can own zero, one,

or many attributes. Note the label above the link, OEN = EN. This

means that the entity name (EN) is inherited by Attribute, but the

name is changed to OEN (owned entity name) to signify that entity

is the owner of that attribute.

Entities also contain one or more attributes. One might at first draw

a strong many-to-one link from Entity to Attribute. However, attri-

butes can participate in many entities. This would mean a many-to-

many link between Entity and Attribute, which is not allowed. The

AnalysisofMethods 62

Final Report IDEF lx

solution to this dilemma is a new entity class for attributes occurring

in entities (AO[E). The appropriateness of this solution will be seen
later when roles are discussed.

Along with attributes, entities have groups of attributes called keys

which uniquely identify instances of the entity. An entity must always

have a primary key, thus the strong many-to-one link from Entity to

PK (Primary Key). There may also be alternate keys (AK) which

uniquely identify the entity. Only the primary key is inherited across

relations though. The entity name (EN) is inherited by PK as a

non-key class attribute. The reasoning for this is that every key is

unique, but there may be more than one key per entity or a key may

participate in more than one entity. Thus the entity name is not

sufficient to uniquely identify a key. A Key-ID (K/D) is generated to

uniquely identify the key.

Note that an entity can only have one primary key, hut we show a

strong-many-to-one relationship between Entity and PK. Surely,

some gyrations could be done to try and express the constraint that

an entity must have exactly one primary key, but would it serve

instead to just make the model unreadable? There is a cleaner

approach. As part of the IISEE Project, a constraint language based

on first-order predicate calculus has been developed to handle this

type of situation. Actually, the constraint language is powerful

enough to describe all of IDEFI as well.

The constraint necessary to constrain an entity to one primary key
would be written:

for_all e of entity_class:Entity
length (identified_by(e,PK)) = 1;

which checks to see whether entities have exactly one primary key.

Identifiedby returns the set of primary keys which identify the entity.

This should be a singleton set.

Entities can participate in category relations as generic entities or

category entities. Categoric entities are identified by the Categoric

entity class. There are one or many categoric entities in each gener-

alization/specialization relationship (Gen-Spec-Rel). Generaliza-

tion/specialization relationships can be identified by the attribute

which acts as discriminator in the relationship. The generic entity is

identified by the EN attribute class inherited through the acts_as_ge-

neric_in link class. Again, a constraint is needed which specifies that

an entity cannot act as both generic and categoric entity in the same

category relationship. The constraint would be written:

Analysis of Methods 63

Final Report ID EF I s --

labeHted_thmaBb/clu_es_tabed tm_m_of

/\

Figure 5.5 Relation Submodel

for_all e of entity_class:Entity
for_all c in occurs_as(e, Categoric)

(EN(categodzed in(c)) <> EN(e))

which checks (for all entities) the set of relations in which the entity

acts as generic in to make sure there are no relations in which the

entity acts as both generic and categoric. The constraint specifically

states, checking all entites (Vast line), that for all occurences of an

entity as a categoric (second line), the generic entity of the general-

ization/specialization relationship should not be the entity in question

(third line).

5.3.2 Relation Submodel

Relations are represented by links between entities which are labeled

with a verb phrase. There can be many relationships between two

entities, so in addition to the Dependent Entity Name (DEN) and

Independent Entity Name (IEN), a Relation ID (RID), which is the

verb phrase used to label the link, is also used to uniquely identify
the relation.

All relations cause the primary key of the independent entity to be

inherited by the dependent entity. In the case of identifying relation-

ships, some or all of the inherited attributes must be used in the

primary key of the dependent entity. In a non-identifying relation-

ship, attributes from the primary key of the independent entity are

inherited by the dependent entity, but none of them may be used in

the primary key of the dependent entity.

Analysis of Methods 64

FinalReport ID EF l x

5.3.3 Key Submodel

Keys are collections of attributes that are responsible for uniquely

identifying entities and showing the inheritance of attributes between

entities. Many times there are many sets of attributes which could

uniquely identify an entity. The choice of which set becomes the

primary key is made by deciding what information should be passed
to other entities.

Every entity has one or more keys. Keys are uniquely identified by

an autogenerated Key ID (K/D). If there is only one key, then that

key is the primary key. The entity name (EN) of the entity which

contains the key is also kept.

Keys are made up of one or more attributes, and an attribute can

participate in many keys. Consequently, the Attribute Occurrence In

Key (AOIxK) entity is used to describe this many-to-many relation-

ship. The keys of Attribute Occurrence In Entity (AOIE) and PK or

AK are combined to form the key class of the AOIxK entities.

5.3.4 Attributes and Roles

l(EN)

_I(E#)
[Entity]

identified_by/identifies

identified_by/identifies

(KID)
EN

A

_-- PK I 11
1

Attributes have already been discussed in some detail in the previous

submodels, but the subject of attribute roles needs to be addressed.

acts_as_generic_in/generic_of

aclsas_dependent/

dependent_of

inherited_through/

cause s_inheritance_of

EN, KID ,

lGen-Spec-Rel ' 5

acts_as_independent/independent_of

_ (RID.IEN.DEN)

Cardinality,KID
Relation 10

inherited_through/c ause s_inherit aace_o f

Figure 5.6 Key Submodel

Analysis of Methods 65

FinalReport ID EF I x

(AN, UEN,OCC)
IAOm 2

described_by/

_scdbes

IRole I 3] /

(EN)
rE#)

Entity I

occur_as/

occurence_of

1

t oc,c_ urs_as/

o¢_urenoe_.of

\

acts_as..generic_in/generic_of

owns/owner_of

(OEN = EN)

OEN
Attribute { 4

discriminates/

discriminator_of

\

(AN)

-Rel] 5

/

(AN,UEN,OCC
KID)

AOIPK 17
i (AN,UEN,OCC I

Figure 5.7 Attribute Submodel

As was discussed earlier, it is often convenient to append a role name

on to the front of an attribute to show which relationship caused the
inheritance of that attribute.

Since there is no particular information that needsto be kept about a

role name, it might seem that it could be an attribute of Attribute

Occurrence In Entity (AOIE). There is a fatal flaw in this strategy,
however-- not all attributes used in entities have a role name. Thus

the No-Null Rule would be violated. The entity class Role has been

added along with a zero or one link with AOIE. AOIE's key class is

inherited by Role. With this architecture, an attribute used in an entity

can have a role-name, and the information about the roles attributes

play in entities is maintained.

5.4 Strengths and Weaknesses

Why IDEF Ix? IDEFlx is a potent tool for data modeling. On the other

hand, there are numerous other data modeling tools such as Chen's

66Analysis of Methods

Final Report IDEFIx

Analysis of Methods

ER [Chapter 6] and ENALIM [Chapter 41. IDEFIx'S strengths lie in

its roots. Due to the strict standardization associated with Department

Of Defense projects, IDEFlx should be saved from having numerous

variants like ER. Having a standard is crucial to transfer of knowledge

between organizations. It is hard enough to fred time to learn more

than one methodology, without having to learn variants of each.

IDEFlx also profits from its thorough description of the model

development phases. The development process comes from IDEFI,

and has better than ten years of testing behind it. The similarity of the
model development processes between the two methods allows them

to be easily used in combination (IDEFI for information modeling

and IDEFlx for conceptual data modeling). Without proper phases

of development and interaction with experts and management, a

modeling project is doomed no matter how strong the design of the

underlying methodology.

Another strength of IDEFIx is its relationship to the other IDEFs.

IDEFIx is part of a family of methodologies which form a framework

for accomplishing a complete model of the enterprise. IDEF0 is used

to model activities, IDEF1 for information, and IDEFIx for data.

IDEF3 has recently become available for process flow and object-

state-transition modeling and IDEF4 is available for object-oriented

design.

A weakness of IDEFIx and nearly all methodologies is that the

modeler must be experienced in order to create good models. Mod-

eling is not an intuitive process, and many times models will have to

be discarded due to a poor start. The simpler the methodology is to

use the better, but the methodology must still have the necessary

expressive power. A good example of a powerful concept which can

be abused is the category relation. Whereas there are times when

categories are necessary, there are others when they are used to create

meaningless entities. Most inexperienced IDEFIx modelers tend to

fall into the trap of using the categorization features of IDEFIx to

model natural taxonomies as opposed to data taxonomies (as they

were intended to be used). Because of the categorization components

of the IDEFIx method many domain experts have fallen into the trap

of trying to use the method for concept and terminology definition.

Unfortunately the data modeling considerations that are built into the

rules of IDEFIx do not allow it to function adequately for this

purpose. The result is that much of the information gathered cannot

be expressed or is expressed erroneously. For example, to function

adequately as a language for concept and terminology definition,

IDEFlx would have to be capable of expressing the fact that a SOW

(statement of work) is a document and is a legal contract; or that a

square is a polygon with four equal sides.

67

Final Report IDEF sx --

5.5 Integration With Other Methodologies

We have mentioned before that it is necessary to have more than one

methodology if we hope to manage all the representational needs of

a given enterprise. The sledgehammer approach just does not work.

Having individual methodologies to capture each subset of the total

enterprise representation requirements is not enough. The individual

methodologies must work together as a cohesive and unified set. It

is not possible at this time to expect a computer to draw all of the

pertinent information from an activity model and create the informa-

tion model. Whereas the computer can identify possible overlap, it is

up to the modeler to define the overlap.

As an example of how the computer can identify overlap, let us look

at IDEF0 [Chapter 3] and IDEFIx. In IDEF0, there are activities and

concepts which are used as inputs, outputs, mechanisms, and controls

of the activities. It is often suggested that these concepts could be

automatically identified as entities in an IDEFIx model. While such

integration cannot be completely automated, it can be eased with

fairly simple tools. Say an IDEF0 model has been created. When the

modeler moves on to the IDEFIx model, the concepts with their

glossary text could be distributed among the source material log, the

source data list, the entity pool, or the attribute pool to facilitate the

generation of the model.

It is not enough to stop there though; there must be a conceptual

schema through which data can be mapped back and forth between

the models and a configuration management system for maintaining

consistency between the models. If the concept is deleted from the

IDEF0 model, it is likely that the respective entity will need to be

deleted from the IDEFIx model. This is a rather simple case of

integration called transliteration. Transliteration involves translating

from the naming conventions of one methodology to those of another.

Unfortunately, there are few cases where there is a one-to-one map-

ping between model elements used in different methodologies. It

may, however, be possible to develop production rules for translating

specific configurations of model elements in one methodology into

those of another methodology. For example, category relationships
in IDEFIx map easily to zero-or-one links in IDEFI. Production rule

translation between methodologies, however, is still limited.

The real magic begins with tagged inferences. Comparing the struc-

tures and textual descriptions of entities in different methodologies

could infer a relationship between the entities. This is the meat of the

integration issue and will require a great deal of research to obtain a

solution. Once integration reaches this stage, the analysis portion of
the modeling task will start to be automated.

Analysis ofMethods 68

Final Report IDEF Ix

If the scope of the integration is limited to integration with other data

modeling methodologies, there are some specific issues which can

be addressed. For instance, why do we need multiple methodologies
for data modeling? Ideally, we do not need more than one. Unfortu-

nately, the current methodologies have communities of modelers

whose methodologies are the palettes they paint from. Where water

colors and off-based paints can both create a painting of a farm, the

techniques used with the different mediums vary greatly. It is not

reasonable to replace an mist's palette in the middle of his or her

career. Thus, there will always be different methodologies with

overlapping goals.

There are obvious similarities between the data modeling methodol-

ogies. For instance, there are entities in one form or another in all data

modeling methodologies. Unfortunately, when it comes to constructs

such as keys and relationships, there are major syntactic and semantic

differences between the methodologies. For instance, how does the

primary key from an IDEFlx model translate to attributes in an ER

diagram?

These issues will continue to demand our attention. Fortunately, a

number of efforts are currently under way to address methodology

integration issues.

5.6 Conclusions

IDEFIx is a methodology for data modeling and conceptual schema

design. Entities are detrmed by attributes and related to other entities.

Keys axe used to uniquely identify entities and pass information

between entities. Categories of entities can be created which are

discriminated by an attribute in each of the category entities.

Besides having a rigorous definition, IDEFIx also draws upon the

other IDEFs to form a set of tools for modeling complete enterprises.

Through integration at the methodological level, more sophisticated

models will be able to be created and maintained. By looking at each

methodology and understanding its semantic content, a better under-

standing of the integration issue can be developed. The path is a steep

one, but does not appear to be insurmountable.

Analysis of Methods 69

FinalReport IDEFIx

Analysis ofMethods

Appendix A. Abbrevialions used in IDEFlx Melamodel

AN: A_ttribute Name; occurs in the key class of Attribute, uniquely
identifies an attribute.

AOAD: Attribute Occurrence L_s Discriminator; an entity class.

AOIE: Attribute Occurrence [LnEntity; an entity class.

AOIK: A_ttribute O._ccurrence In K._ey; an entity class.

Attribute: an entity class.

CARD: attribute class containing information about the cardinaliry of
the relation.

CAT-P: attribute class which identifies category relations.

DEN:]_ependent Entity Name; attribute inherited from Entity. DEN

specifies whether an entity the dependent entity in a relation.

EN: Entity Name; which uniquely identifies Entity.

Entity: an entity class.

IDENT-P: attribute class which specifies identifying relations.

IEN: Independent _Entity Name;attribute inherited from Entity. IEN

specifies whether an entity is the independent entity in a relation.

Key: an entity class which describes the characteristics of a key.

K/D: Key IDentifier; occurs in the key class of Key, uniquely
identifies a key.

K/TR: Key Inherited _Through Relation; an entity class.

OCC: OCCurrence number which distinguishes between similar

attributes inherited from different entities.

OEN: Q_rned .l_.ntity Name; attribute inherited from Entity, which

specifies the name of the entity where the attribute originated.

Relation: an entity class.

R/D: R_elation I__Dentifier; occurs in the key class of Relation, uniquely
identifies a relation.

Role: an entity class.

Role-Name: attribute class of Role, describes the role an attribute

plays.

SPEC-P: attribute class which identifies specific relations.

Status: attribute class which specifies whether a key is an ahemate or
primary key.

UEN: User Entity Name; occurs in the key class of AOIE.

70

Final Report IDEFIx

References

ANSI/X3/SPARC, FDT...Bulletin of ACM - SIGMOD The Special

Interest Group on Management of Data, ANSI/X3/SPARC,

Study Group on Data Base Management Systems, Imerim Re-

port, 02/08, 1975.

ISO, Information processing systems - Concepts and Terminology

for the Conceptual Schema and the Information Base, Interna-

tional Organization for Standardization, Technical Report 9007,
1987.

ISO, Concepts and Terminology for the Conceptual Schema and the

Information Base edited by J.J. vanGriethuysen, March 15, 1982.

"IISS - Integrated Infomation Support System", D. Appleton Com-

pany, Inc, ICAM Project Priority 6201, Subcontract #013-

078846, USAF Prime Contract #F33615-80-C-5155, Dec. 31,

1985.

Mayer, R.J. and the IDSE Research Team, "I2SE 2 Report", Final

Report, Knowledge Based Systems Laboratory, Texas A&M

University, 1988.

Analysis of Methods 71

m

Entity Relationship: Conceptual Schema Design

Analysis of Methods

he IDSE Research Group is currently developing techniques toeffectively integrate modeling methodologies. The approach in

developing these techniques has been to analyze several modeling

methodologies so that the factors that must be considered for integra-

tion could be identified. This chapter presents the Entity Relationship

(ER) methodology and the analysis, in the form of an Integrated

Computer-Aided Manufacturing (ICAM) DEFinition (IDEF) lan-

gage IDEFI model of the ER methodology.

6.1 History and Purpose

The Entity Relationship (ER) modeling methodology was originally

developed in the mid-1970's by Dr. Peter Chen to aid in the design

of database systems. The development of the ER approach was

prompted by the recognition that the existing data models used for

physical database layout design (e.g. the network model, the rela-

tional model, and the hierarchical model) were too "low level" for

adequate modeling of structure and properties of a relational database

and its mapping onto the "domain of discourse". As a result of this

recognition, Chen fh'st presented the ER approach in 1976. The ER

model was intended to present a unified view of data, utilizing the

advantages of the network, relational, and hierarchical models, while

overcoming their individual disadvantages [Chen 76].

The ER model also appeared at a time when the concept of logical

and physical views of data was in its infancy. Not too long after this

method was introduced, the ANSI/X3/SPARC committee completed

its three schema architecture for database system design. The com-

ponents of the architecture are 1) the external schema, 2) the concep-
tual schema, and 3) the internal schema. The external schema

describes the system as it appears to the user or application program

while the intemal schema specifies the physical database schema. The

72

Final Report Entity Relationship

Entity Set

Attribute

p_

ER Syntactic Dements

envisioned purpose of the conceptual schema was to provide a basis

for mapping the external schemas to the intemal schemas. Chen

envisioned the role of the ER method to encompass the specification

of this conceptual schema.

The proported advantage of the intermediate conceptual schema was

that this schema, once completed, would remain relatively constant

over time, allowing isolation of the way the data was used (extemal

schema) from the way it was physically stored (internal schema). The

reason for this is that the conceptual schema presents an overall view

of the information managed by a system. Changes in the internal and

external schemas could take place without making any changes to the

conceptual model. The ER approach was proposed for the develop-

ment of the conceptual schema by taking a "real world" approach

toward describing the system. This description would be independent

of any user or database manager view of the system, providing a

stable base upon which to develop the external and internal schemas.

6.2 Syntax and Semantics

In an ER model of the real world, things are recognized as either

entities or relationships among entities. An entity is just some "thing"

that exists within the system being modeled. Entities that share

common characteristics are grouped into entity sets. A relationship
shows some interaction between entities taken from one or more

entity sets. Relationships that relate entities from the same entity sets

and describe the same interaction are grouped into relationship sets.

More formally, a relationship r, an element of the relationship set R

which is def'med on entity sets El, E2, ..., Era, is expressed as a tuple

r = (el, e2, ..., era), with the meaning that entities el, e2, ..., em are

mutually related with respect to R [Sakai 83].

To more completely define these objects, attributes can be defined

for both entity sets and relationship sets. An attribute is a function

that maps a particular entity or relationship onto a certain value that
is a member of a value set or Cartesian Product of value sets. A value

set simply indicates the type of value that a particular attribute may

have. The definition of these value sets is also required when clef'ruing

an attribute for an entity set or relationship set. It is possible for

different attributes to map to the same value set.

An Entity Relationship diagram uses four syntactic elements to

represent the entity sets, relationship sets, attributes, and value sets

(see insert). A rectangular box is used to denote an entity set and the

name of the entity set is placed inside the box. To indicate a relation-

ship set, a diamond shaped box with lines running from the relation-

ship set to the related entity sets is used. As with the entity set, the

Analysis of Methods 73

Final Report Enti_ Relationship

Analysis of Methods

name of the relationship set is placed within the diamond shaped box.

To represent a value set, a circle, with the name of the value set inside,

is used. An attribute of an entity set or relationship set is specified by

drawing an arrow from the entity set or relationship set which is

described by the attribute to the appropriate value set for that attribute.

A label next to the arrow gives the name of that attribute. When an

attribute maps an entity or relationship set instance onto a Cartesian

Product of value sets, a split arrow is used to link the entity or

relationship set with the value sets in the Cartesian Product.

Figure 6.1 shows a simple diagram modeling a typical office situa-

tion. Again, the rectangular boxes represent the entity sets (labeled

Employee, Project, and Department). The example in Figure 6.1 also

defines two relationship sets using diamond shaped boxes (labeled

Worker and Has/In). Also, note that the links (represented by lines)

connecting the relationship set to entity sets are annotated at the ends.

The cardinality of a relationship is described using these annotations.

For instance, the Has/In relationship set, relating Department entities

to Employee entities, has a one to many cardinality (sometimes

written l:n). The reading of the relationship denoted by the "has"

relationship set is "a Department entity can have n (an arbitrary

number of) Employees." The reading of the relationship denoted by

the "In" relationship set is "an Employee can be in only one Depart-

ment." An ER diagram also allows one to one (1:1) and many to many

(m:n) relationships [Chen 77].

I1

la_rem_

n 1

Figure 6.1 Example ER Diagram

Figure 6.1 also shows the definition of attributes and value sets.

Notice that both entity sets and relationship sets can be used to display

associated attributes. SSN is an attribute for the Employee entity set

and Percentage of Time is an attribute for the Project-Worker rela-

tionship. In the diagram, a labeled circle represents a value set.

The example in Figure 6.1 also describes additional features of the

ER method. Notice the double box surrounding the Child entity set

74

FinalReport Entity Relationship

Analysis of Methods

and the E & ID describing the Depends relationship _t. These

descriptive features illustrate the "Existence" and "Identification"

Dependencies. [Chert 77]. In this case, the Child entity set is both

existent dependent and ID dependent on the Employee entity set.

Both dependencies occur through the Depends relationship set. Ex-

istence dependency tells us that a child entity cannot exist within this

system unless the employee entity upon which the child depends also

exists. Similarly, ID dependency tells us that identification of a child

entity depends on the ID of the employee entity upon which the child

depends. This example presents a situation where an entity set is both

existence and ID dependent on another entity set. It is not required

that this always be true. It is possible for an entity set not to be ID

independent and yet still be existence dependent and vice versa. In

either of these two cases, the double box still surrounds the dependent

entity set, but only the E or ID will appear in the diamond for that

relationship set.

An additional point not obvious in this example is the notion of

identification. A primary key is a collection of attributes that will

uniquely identify an occurrence of an entity set. In building an ER

model, the attributes making up the primary key must be identified.

Occurrences of relationship sets also have a primary key to identify

them. The difference is that the key of a relationship set is determined

by combining the keys of the entity sets related by the relationship

set. As such, the relationship set does not really have a key of its own

since the key is derived. The significance of this fact becomes more

evident in the discussion of attributes in the Metamodel section of the

paper.

At this point, it should be noted that different versions of ER diagrams

exist. In fact, the different versions make up a spectrum of ER types.

On one end, there is the ER model originally suggested by Chen that

allows n-ary relationships (relationships defined on more than two

entity sets) and attributes defined for both entity sets and relationship

sets. On the other end, there is the version that allows only binary
relationships between entity sets and does not allow for the definition

of any attributes [Chen 81]. Each version along this spectrum was

developed to overcome a certain disadvantage of existing versions or

to provide the capability for a certain situation that could not be

handled with current versions. This chapter is concemed only with

the ER method originally introduced by Dr. Chen.

6.3 Metamodel

This section discusses an information model of the Entity Relation-

ship methodology. This model is represented in IDEFI. In discussing

this model, careful attention must be given to the fact that both ER

75

Final Report Entity Relationship

and IDEFI have similar terms for objects in their respective models.

In the following discussion, it is important to remember that entity

sets and attributes are part of ER models while entity classes and

attribute classes are part of IDEFI models. The following discussion

will attempt to prevent any confusion in terminology.

The complete IDEF1 metamodel of the Entity Relationship method

is given in Figure 6.2. For discussion purposes, the metamodel will

be broken up into logical units and each unit will be discussed

individually. This should make the explanation of the metamodel
more understandable.

[I U_-_U_r Of
Entie/Set t

1
O¢¢.r. A_/Occ ._-ncc_Of

Art-Use-Role

AUIES

I (AN,VSN)

V

r"l

/ !_.s_,msN,occ)!

Described_ B y/'l_seribcs

C_/in_Un/

q,

I

Us=s/User_Of

I
Appears_As/

User Of [OISN)

Relstionship Set
I

Psrti,,lly_ldevaifies/

Partlal_Identifie'r_Of

>

I_$N,IISN,OCC,DESN) IIE.- P I

Occurs_A J/

Occu_-n,t_s_of

___ (ESN,I_N,OCE, I

IESN)

Figure 6.2 Entity Relationship in IDEFw

6.3.1 Base Entity Classes

In the metamodel (see Figure 6.2) there is a corresponding entity class

for each of the four ER objects (entity set, relationship set, attribute,

and value set) that occur in an Entity Relationship model. Each of

these entity classes captures the information maintained by each of

Analysis of Methods 76

Final Report Entity Relationship

these objects in an ER model. The Entity Set entity class has an Entity

Set Number (ESN) attribute as part of its key class that will uniquely

identify that Entity Set. This entity class also has a Name attribute

that captures the name of the Entity Set. The other three base entity

classes have similar key and attribute classes. The Relationship Set

entity class has a Relationship Set Number (RSN) in its key class and

a Name attribute class. The Attribute entity set has an Attribute

Number (AN) in its key and a Name attribute. Finally, the Value Set

entity class has a Value Set Number (VSN) in its key class and a

Name attribute class. Besides these four entity classes, additional

entity classes have been added to show information that the ER model

maintains about the interaction between these four entity classes and

to show special relationships that exist between the entity classes.

6.3.2 Entity Set/Relationship Set Interaction

Figure 6.3 shows the interaction between the Entity Set and Relation-

ship Set entity classes. A relationship set may relate one or more

entity sets and an entity set may be involved in one or more relation-

ship sets. The Entity Set Use in Relationship Set (ESUIRS) entity

class reflects this many to many situation. The ESUIRS entity class

inherits the ESN attribute class from Entity Set and the RSN attribute

class from Relationship Set into its key class. The additional OCC

I]
E,miw Set [

U_,/thm-_Of

._l ¢L_l'lsN'°c'C> [

"l I

UmL/U_ Of T

ship Set

Ooe urs_A s/Oct urtmees_Of

I fESNJCSN,OOCr)

JN,B
[Role I

Dcacribcd_ B y/I_-acrlb¢_

Oecurs-AI/

umnc__Of

I-
Ex-Dcp I

_ ('F.SN.RSN.OCC,

IIZSN) J_-_ I

Figure 6.3 Entity Set - Relationship Set

Analysis of Methods 77

Final Report Entity Relationship

Analysis of Methods

attribute class completing the key class makes the di_inclion between

multiple occurrences of the same entity set in the a relationship set.

This OCC attribute ensures that a relationship will have a unique
identification.

Another entity class in Figure 6.3 represents the Role of an entity in

a relationship. Whenever an entity set is used in a relationship, the

role that the entity plays in the relationship can be specified. Notice

that a role is not always required when relating entity sets. An

example of this situation might be a marriage relationship defined

between two entities from the Person entity set. Since marriage is a

binary relationship defined on the same entity set (Person), additional
information must be maintained to make the distinction between the

two entities. In this example, one entity would be given the husband

role while the other entity would be given the wife role to further

describe the two entities. This entity class inherits its key class

directly from ESUIRS and requires no additional attributes in its key

class. This is true as the relation is uniquely identified by the OCC

attribute class. However, the Name attribute has been added to

represent the name of the role the entity is to assume in the relation-

ship.

The final two entity classes in Figure 6.3, Ex-Dep and ID-Dep

represent the existence dependency and the identification depen-

dency of an entity involved in a relationship. Their structure within

the model is almost identical. The ESUIRS entity class has a one to

zero, one, or many link with the Ex-Dep entity class. This indicates

that one entity set involved in a relationship can be existent dependent

on one or more other entity sets involved in the relationship. The

ESUIRS entity class also has the same type of links with the ID-Dep

entity class. Again, this is saying that one entity involved in a

relationship can be identification dependent on one or more other

entities involved in the relationship. Both entity classes inherit their

key classes from ESUIRS. But, knowing that an entity set is depen-

dent, without knowing on which entity set it depends, is not very

useful. As a result, the Dependent Entity Set Number (DESN) attri-

bute class was added to the key class of Ex-Dep and the Independent

Entity Set Number (IESN) attribute class was added to the key class

of ID-Dep. In each case, the attribute identifies the entity set upon

which the dependent entity set depends.

6.3.3 Entity Sel/Relationship Sel/Allribule lnleraclion

Figure 6.4 outlines another portion of the metamodel. This portion

represents the interaction between the Entity Set and Relationship Set

entity classes and the Attribute entity class. As was mentioned before,

both entity sets and relationship sets can have attributes. But, again,

78

Final Report Entity Relationship

(AN] k.]

N=me

Attribute

1-

Pmlilly_Iiniifies/

Plu_l_kimtifi_r_Of

I]Nami

Entity Set [

I u,_L/U__of

__ (AN.R,SN) _>.J Delcrl
AUIIUARA J

__ (AN,I_N,I_N,

OCC)

AUII_AX J

U_./U_-v_Of

Analysis of Methods

Figure 6.4 Attribute-Entity Set-Relationship Set

a many to many situation exists as an attribute can apply to many

entity or relationship sets while an entity set or relationship can have

many attributes. For each case, to correctly capture this information,

an additional entity class was defined. The Attribute Use in Entity Set

(AUIES) entity class was added to capture the multiple use of

attributes by many entity sets and to capture the possession of

multiple attributes by an entity set. The key class of this entity set is

made up of the ESN of the entity set being described and the AN of
the attribute. In addition, The Att-Use-Role attribute of ALLIES

indicates whether the attribute is being used as part of the key of the

entity set or whether it is just a descriptive attribute.

The Attribute Use in Relationship Set as Relationship Attribute

(AUIRSARA) was added to resolve the many to many situation

between Attribute and Relationship Set in the same way that AUIES

resolved the problem for Entity Set and Attribute. Similarly, thiq

entity class inherits its key class from Relationship Set and Attribute.

But, notice that an Art-Use-Role attribute does not appear in this
entity class. This is because of a distinction in ER models between

the use of attributes for describing relationship sets and the use of

attributes for identifying relationship sets. Remember from Section

6.2 that a relationship set derives its key froha the entity sets that the

relationship set relates. This derivation of the primary key must be

reflected in the metamodel. When an entity set is involved in a

relationship, the record that a transfer of an attribute in the key of the

79

Final Report Entity Relationship

Analysis of Methods

entity set to the key of the relationship set has occurred is maintained

through the Am'ibute Use in Relationship Set as Key (AUIRSAK)

entity set. It is in the two entity classes, AUIRSARA and AUIRSAK,

that the distinction between a descriptive attribute and an identifying

attribute of a relationship set is maintained.

AUIRSAK inherits part of its key, the AN and ESN attribute classes,

from the ALLIES entity class since any attribute in the key of a related

entity set will also be an attribute in the key of the relationship set.

The RSN migrates to the key class from the Relationship Set that

relates the entity set. And finally, the OCC attribute is necessary to

distinguish between multiple occurrences of the same entity set in a

relationship set.

6.3.4 Attribute/Value Set Interaction

Finally, Figure 6.5 shows the interaction of the Attribute and Value

Set entity classes. Again, a many to many situation exists between

the two classes. An attribute can be used to describe many entity and

relationship sets but, every time, map to a different value set. On the

other hand, a value set can be used as the range for many attribute

functions. As a result, the Value Set Use in Attribute (VSUIA) entity

class was added to capture these situations. The key class of VSUIA

consists of the AN from the attribute being defined and VSN from

the limiting Value Set.

(AN) J

Nsme

Am'ibu_ I

0c¢ urs_As/Oc¢ tu,ence_ Of

(AN.VSN)

l IJ_ffI.T__of

CVSN) I
Nlme

Va ue Set I

Figure 6.5 Attribute - Value Set

6.4 Tips and Traps

As mentioned previously, ER models have proven very useful in

developing conceptual schema for database systems. The following

guidelines should assist in the development of ER models:

80

Final Report Entity Relationship

1. Identify the entity sets.

2. Identify the relationship sets.

3. Draw the ER model with the entity and relationship sets.

4. Identify attributes and value sets.

6.5 Strenglhs and Weaknesses

As has been mentioned, the greatest strength of the ER method is its

ability to effectively represent the conceptual schema (as used in the

context of database management systems), since it was originally

developed as a mechanism for logical database design. ER's effective

manner of representing the conceptual schema is derived from the

fact that it produces relatively simple and intuitive descriptions of the

systems being modeled, and from the fact that effective techniques

have been developed to translate a completed ER model into an

equivalent data structure definition [Chert 77]. This allows an easy

development of the internal schema from the conceptual schema

represented in an ER model.

However, notice that these strengths all depend on the existence of a

completed ER model. A completed ER model is easy to understand

and easy to translate. But, there is no easy way to produce this ER

model. Section 6.4 outlines a step by step process to follow when

producing an model. But, for example, just how does a modeler go

about identifying the entity sets that will exist within the model?

"There is no evidence to suggest that it is easy or natural to select, a

priori, the entities, attributes, and relationships for ER conceptual

schema. On the contrary, the opposite seems to be true: the task is

commonly regarded as subjective, difficult, and iterative"

[Nijssen 88]. We believe that the primary reason for this difficulty is

that ER is a design method. It is intended to assist a designer in

organizing, communicating, and analyzing his/her design. The prob-

lems with its use arise when non-designers attempt to use it to model

concepts and terminology in their domain or when programmers

attempt to use it to model internal data structure. The first of these

applications is more appropriately a task for the ENALIM method.

The second is the design of a data charting technique. Problems

experienced during a misuse of a method (application beyond its

design limits) should not be considered a valid basis for criticism of
that method. However it can be said that to increase the usefulness

and effectiveness of the ER method for database designers, qualita-

tive techniques and decision procedures for identifying and defining

the entity sets, relationships, attributes, and value sets must be devel-

oped.

Analysis of Methods 81

Final Report Entity Relationship

6.6 Integration With Other Methodologies

Integration of modeling methodologies can take two approaches. The

first approach is to integrate a methodology with another methodol-

ogy that is very similar or that is used for the same purpose. The

advantage of this is twofold. First of all, this integration would allow

people familiar with different methods to understand models, origi-

nally produced in another methodology, that have been translated into

the methodology they are familiar with. This ability might promote

joint efforts in developing models, even when the modelers use two

different, but similar methodologies. Chen also points out that the

integration of similar methodologies would also allow the equiva-

lence of two methods to be proven [Chen 81].

The second approach is to integrate methodologies that are not

necessarily similar but, when used together, provide a robust means

of developing effective information models.This integration will not

involve a translation from one method's syntax to another method's

syntax. Instead, this will require the identification of common ele-

ments within the methodologies themselves so that the equivalent

portions of models in the two or more methodologies can be effec-

tively integrated.

6.7 Conclusions

The purpose of this chapter has been to describe the IDSE Research

Group's analysis of the ER approach and the development of the ER

metamodel (a model of ER in IDEFI). This metamodel is the primary

basis from which integration decisions concerning ER will be de-

rived. By developing a metamodel for ER, we hope to generate a very

accurate description of the methodology. The advantage of the

metamodel is two-fold. First of all, common elements of different

methodologies can be more easily identified. In addition, integration

problems can be more easily resolved by having a more complete and

less ambiguous understanding of the different methodologies. The

metamodel provides a common reference from which decisions can
be made.

In performing this research, it is the goal of this group to develop

techniques that will allow the integration of multiple modeling meth-

odologies. The benefit of integrating these methodologies will be the

generation of more complete system models. Each method, on its

own, is used for a special purpose or used to represent a certain

perspective of the system being modeled. By integrating these meth-

ods, a more global perspective and a more complete model of the

system will result.

Analysis of Methods 82

Final Report Entity Relationship

Appendix A. Abbreviations used in the Entity Relationship
Metamodel

Attribute: an entity class.

Art-Use-Role: attribute in attribute class of AUIES which differenti-

ates between attributes that occur in key classes and descriptive
attributes.

AN: Attribute Name; occurs in the key class of Attribute, uniquely
identifies an attribute.

AUIES: Attribute Use In _,ntity Set; an entity class.

AUIRSARA: Attribute Use In Relationship _et As Relationship A._t-

tribute; an entity class.

AUIRSAK: Attribute Use _InRelationship As Key; an entity class.

Entity Set: an entity class.

DESC: Dependent Entity Set Number; occurs in the key class of

Ex-Dep, uniquely identifies an existence dependency.

ESN: E_ntity S_et Number; occurs in the key class of Entity Set,

uniquely identifies an entity set.

ESUIRS: E_ntity S_et Use In Relationship S_et; an entity class.

Ex-Dep: Existence]_f, Rendency; an entity class.

ID-Dep: I__ntification]_Rendency; an entity class.

[ESN: Independent Entity Set Number; occurs in the key class of

ID-Dep, uniquely identifies an identification dependency.

Name: attribute which captures the name of the Entity Set, Relation-

ship Set, Attribute, Value Set or Role, according to the context in
which it is used.

OCC: Occ._..__nce number which distinguishes between multiple

occurrences of the same entity set in a relationship set. It ensures that

a relationship will have a unique identity.

Relationship Set: an entity class.

RSN: Relationship Set Number: occurs in the key class of Relation-

ship Set, uniquely identifies a relationship set.

Role: an entity class.

Value Set: an entity class.

VSN: Value Set Number; occurs in the key class of Value Set,

uniquely identifies a value set.

VSUIA: Value Set Use In Attribute; an entity class.

Analysis of Methods 83

Final Report Entity Relationship

References

Chen, Peter P.S. "ER m A Historical Perspective and Future Direc-

tions", in: Davis, C. G. et al (ed.), Entity-Relationship Approach

to Software Engineering, (North-Holland, Amsterdam, 1983).

Chen, Peter P.S. "Framework for E-R Models," in: Chen, P.P. (ed.),

Entity-Relationship Approach to Information Modeling and

Analysis, (ER Institute, Saugus, CA, 1981).

Chen, Peter P.S. The Entity Relationship Approach to Logical

Database Design, QED Information Sciences, 1977.

Chen, Peter P.S. "The Entity-Relationship Model m Toward a Uni-

fied View of Data," ACM Transactions on Database Systems.,

Vol. 1, No. 1, (March 1976), pages 9-36.

Nijssen, G. M., Duke, D. J., and Twine, S. M. "The Entity-Relation-

ship Data Model Considered Harmful," Effective Relational

Database Design, (Digital Consulting Inc., Sydney, 1988).

Sakai, H. "A Method for Entity-Relationship Behavior Modeling,"

in: Davis, C. G. et al (ed.), Entity-Relationship Approach to

Software Engineering, (North-Holland, Amsterdam, 1983).

Analysis of Methods 84

7

Data Flow Diagrams: Design and Analysis 1

he Data Flow Diagram (DFD) methodology is a widely used
modeling methodology in which the modeler focuses on repre-

senting a system from the viewpoint of the data in the system. Its

primary application is in design and analysis. The first and second

sections of this chapter briefly describe the background, the syntax

and semantics of Data Flow Diagrams. The third section presents an

IDEFI information model of the DFD methodology. This informa-

tion model represents the structure of information needed to support
the functions of a system or operating environment. The fourth and

fifth sections examine the strengths and weaknesses of the DFD

technique and common tips and traps encountered when using DFDs.

Finally, the issue of integration with other methodologies is examined

and concluding remarks are presented.

7.1 History and Purpose

Concepts similar to those used in data flow diagrams (DFD) have

actually been used since the 1940's in flowcharts and Petri Networks.

Since then, the concept of representing the flow of data through a

system has been used for modeling mathematical systems in 1973

[Whitehouse 73], for structured program design in 1975

[Yourdon 75], and for systems analysis in 1977 [Ross 77]. DFDs are

primarily used for understanding and working with a system of any

complexity at the logical level [Gane 77]. They allow a system to be

decomposed into a network representation describing each compo-

nent and the manner in which each relates to the other components.

DFDs force the modeler to present the system from the viewpoint of

1.Fended in part by Tandem Computers Incorporated

Analysis of Methods 85

Final Report Data Flow Diagrams

PROCESS NU_ER

DESCRIPTIVE NA/'_

FOR P_OCESS

,. J

External Entity

Analysis of Methods

the data. This view can often be in sharp contrast to the viewpoint of

an individual or a group of individuals. In classical analysis, the user's

viewpoint and the system's viewpoint were the primary focus. This

difference is significant when examining an overall picture of the

system. By concentrating on the data, a larger view of the system can

be grasped instead of the smaller more biased views that different

managers, divisions, machines, and other data processors are con-

fined to from a person, organization, or system point of view.

7.2 Syntax and Semantics

Data Flow Diagrams are composed of four basic elements: processes,

external entities, data stores, and data flows. NotationaUy, there axe

several variations for drawing DFDs. Throughout this paper, the

convention used by Whitten, Bentley, and Ho [Whitten 86] will be

used. Appendix A shows several of the most common notational

conventions. The following section describes the syntactic and se-

mantic rules of data flow diagrams.

7.2.1 Process

A DFD "process" represents the transformation of incoming data

flow(s) into outgoing data flow(s) [DeMarco 79]. It represents some

type of work performed on data and is required to have a descriptive

name. Notational conventions for representing DFD processes in-

clude rounded rectangles, circles (bubbles), ovals and square boxes.

In a complete DFD, each process will be assigned a unique reference

number. A process must be either at the source and/or destination end

of a data flow. Valid combinations, therefore, would be a process

connected to another process, a process connected to a data store, or

a process connected to an external entity. A data store represents the

existence of a temporary storage place for data. An extemal entity

represents a boundary which lies outside the context of a system. Both
data stores and external entities will be discussed in more detail later

in this section.

The transformation that a process performs on data includes moving

or routing data, performing computations, splitting data into subsets.

combining data from different sources, and changing the basic struc-

tttre of the data. Data might undergo sorting, verification, formatting,

or other similar operations in a transformation process.

7.2.2 External Entity

A DFD "external entity" (EE) represents a boundary which lies

outside the context of a system. An EE denotes the system's connec-

86

Final Report Data Flow Diagrams

M o¢' I'1_

Dam Store

tion to the outside world. It can be a person or an organization but

must be either an originator or receiver of system data [DeMarco 79].

EEs are also called data sources and sinks. Data may flow both to and

from an external entity. Notationally, square boxes are typically used

to represent external entities. Although an extemal entity may be

connected to a process, it may not be connected to another external

entity or a data store.

7.2.3 Data Store

Data Flow

A DFD "data store" (DS) represents the existence of a temporary

storage place for data. Basically, DSs represent collections of data

used and maintained by the system being modeled. Examples include

tapes, foes, databases, in/out boxes, and books. Notational conven-

tions include open ended rectangles with an optional slot for the

medium and straight lines. Both notations require a DS name. DSs

are also referred to as fries. A data store may be connected to a process

but it may not be connected to another data store or an external entity.

7.2.4 Data Flow

A DFD "data flow" (DF) represents the existence of a transfer of

packets or parcels of information of known composition [DeM-

arco 79]. DFs depict reports, documents, computer input, memos,

and any other information flow. They are represented by a line with

an arrowhead at the destination end. Data flows must begin and/or

end at a process and must either initiate a process or result from a

process. They may converge and diverge.

Diverging data flows have a single source and multiple destinations.

A common example would be a purchase order in which the order

comes from a single source, the sales department. When duplicate

copies of the purchase order are distributed to different departments

such as accounts receivable and shipping, the purchase order or data

diverges. Note that each duplicate copy is a packet of known compo-

sition as required.

Converging data flows have multiple sources and a single destination.

Several distinct documents from different departments might con-

verge to form a single combined document. A student's college

transcript would be one example. In general, diverging data flows are

more common that converging data flows.

w

Analysis of Methods C -.2-_ 87

Final Report Data Flow Diagrams

Analysis of Methods

7.2.5 Differences between DFDs and Flow Charls

There are several important distinctions between data flow diagrams

and flow charts [Whitten 86]. One difference is that DFD processes

can describe parallel operations while flowcharts generally only show

sequential processes. A second difference is that DFDs show the flow

of data through a system while flowcharts explicitly show looping
and decision constructs. A third difference is that DFDs can show

timing differences between processes. Finally, while flow charts have

a clearly defined starting point, DFDs do not have this requirement.

7.2.6 Differences between DFDs and Logical DFDs

Another area where possible confusion might occur is in differenti-

ating between data flow diagrams and logical data flow diagrams

(LDFDs) [Whitten 86]. Basically, LDFDs avoid implementation de-

tails by showing only the essential features of the system. They axe

used to specify the logical system requirements.

DFD data flow and data store names describe implementation details
while LDFD data flow and data store names describe the data

contained and avoid how the data is stored or implemented. DFD

allow several types of processes that, due to their implementation-de-

pendent nature, are not necessary in LDFD. Examples would be: 1)

processes that do not change the composition or nature of incoming

data flows, and 2) processes that would not be necessary if the system

were implemented differently. DFDs often have processes that in-

clude multiple tasks performed without any real data flow. LDFDs

would break these processes into several processes each performing

an individual task. More consolidation of duplicate processes is done

in LDFDs than in DFDs. LDFDs tend to restructure the sequence of

processes to capitalize on parallel processing when possible. LDFD
data stores should be consolidated to minimize redundant data stor-

age. LDFDs attempt to eliminate bias of how things are done by only

representing the necessary requirements.

LDFDs are often used by domain experts to describe how a current

system works. They are also used to convey ideas about how a new

system might work. DFDs are most often used as design specifica-

tions by a programming team.

7.3 Metamodel

The metamodel of the data flow diagram methodology was devel-

oped using IDEF1. In this paper, the DFD methodology is being

treated as a system and the information managed by this method is

being modeled using IDEFI. The information and relationships dis-

88

Final Report Data Flow Diagrams

(LID)
PAID
START
laql)

IJNK

('SID)
ROLE
PAID
CONTEXT

S'llt UC11.q_ 14

of

V

LINK.OCC-i_/-DIF2

DF-BTWN-IP&p

DP-BTWN .P&._E

Figure 7.1 IDEF1 Metamodel of DFD

Analysis of Methods 89

Final Report Data Flow Diagrams

Analysis of Methods

played in the DFD metamodel provide a view of the DFD method

system from the viewpoint of the information managed by that

method.

The objective, when developing the DFD metamodel, was to model

the information that the DFD method maintains about processes, data

stores, data flows, and external entities. By modeling the information

kept by each DFD model element, their relationships could be studied

to find commonality across system engineering methodologies. For

example, a DFD process and an IDEF0 [Sofrech 81] activity actually

maintain the same information although they have different model

element names. This commonality could be useful when trying to

build a DFD view of a system given an IDEF0 model and view.

A key to achieving this objective was to first develop a way to model

the DFD data flow. The single DFD data flow actually tunas out to

represent several different "types" of data flows based on the infor-

mation maintained by the data flow as it relates to different entity

classes. One alternative to modeling the "different" data flow "types"

in this manner would be to use a constraint language to specify legal

and illegal constructs. The research team has developed a constraint

language based on fast order logic and basic set theory. It will provide

a neutral representation language to give the methodologies more

expressive power. This will enable the modeler to avoid awkward

constructions and create simpler models since the constraint language

can be used to handle unusual relationships and cases.

The four key concepts needed to understand the structure of the DFD

metamodel are:

• differences between processes

• the relationships between processes

• decomposition or leveling

• relationship of the structure entity class to converging and diverg-

ing data flows

These four concepts will be covered in the next three sections.

7.3.1 Relationship of process to other entity classes

DFDs explicitly have only a single data flow type; however, it is used

in several different ways. Thus. the DFD metamodel has three distinct

entity classes to capture the different information inherent in each

use. This view was taken in the DFD met amodel resulting in the entity

classes: Data Flow BeTWeeN Process and Data Store (DF-BTWN-

P&DS), Data Flow BeTWeeN Process and External Entity (DF-

BTWN-P&EE), and Data Flow BeTWeeN Process and Process

90

Final Report Data Flow Diagrams

(DF-BTWN-P&P). This structure models the information main-

rained by data flows associated with a process and a data store pair,

a process and an external entity pair, and between two processes,

respectively.

Why not simply model the single data flow? The problem arises when

trying to properly inherit attributes. Processes, data stores, and exter-

nal entities do not maintain the same attributes. A constraint list

would also be necessary to prevent illegal combinations of processes,

data stores, and external entities. For example, a data flow connecting

two processes maintains information about a destination process

(TO), a source process (FROM), and an occurrence number (OCC#).

A data flow connecting a process and a data store maintains a process

id (PID), a data store name (DSN) and an occurrence number. This

becomes significant when LINK-OCC-IN-DF3 inherits TO, FROM,

and OCC# from DATA-FLOW-3 and then LINK-OCC-IN-DFI in-

herits PID, DSN, and OCC# from DATA-FLOW-1.

A process is the independent entity in each of the weak many to one

relationships with the data flow entities (DF-BTWN-P&DS, DF-

BTWN-P&EE, DF-BTWN-P&P). Figure 7.2 highlights these rela-

tionships and the procss entity class relationship to the decomposition

entity class as depicted in the metamodel. A more detailed discussion

of the decomposition entity class will be presented later (see Section

7.3.2).

OrD, I_OM, OL-'_#) 1

•l_r of

IPID - CONTE,'fT

IDIMI'II'WN4P0r"I_ ! 9 l_-i$'r_..li'&,l_] i I

Figure 7.2 Decomposition, Process and Data Flows

Analysis ofMethods 91

Final Report Data Flow Diagrams

Analysis of Methods

Figure 7.3 highlights another portion of the metamodel. The DF-

BTWN-P&DS entity class models the information that a DFD main-

tains about a data flow between a process and a data store. A data

store is the independent entity class in the strong one to many

relationship to dependent DF-BTWN-P&DS. The DF-BTWN-

P&DS key class is composed of a process id (PID - inherited from

process), data store name (DSN - inherited from data store), and an

occurrence number (OCC#). Its attribute classes include the attribute

class direction which maintains the source-to-destination direction of

the data flow. In other words, when connecting a process and a data

store, the fact that the flow of data is from process to data store or the
reverse is maintained.

(IPID, DGN, OCC#)
DIIJBC/1ON

DF-BTWN.Ntl_ I 9

I (I_N)

NR.EN,_llg

MEDIUM
DATA-5"/DILE [12

0PID, IEIEN,OCCI, LID)

=7 . o,

Figure 73 Data Flow Entity Classes

('IX),FROM,

OCC#. LID)

UNIK-OCC.IN-IWP3 I 6

0'0, FROM. OL"VO)]

R

I
DIF-BT'WN -IP&p] g

DF-BTWN-P&EE models the information that a DFD maintains

about a data flow between a process and an external entity. The

"external entity" is an independent entity in a strong one to many

relationship to DF-BTWN-P&EE. In other words, for every external

entity, there must be one or more DF-BTWN-P&EE. The DF-

BTWN-P&EE key class and attribute class are identical to that of

DF-BTWN-P&DS with one exception. Since DF-BTWN-P&EE

connects a process to an external entity, the DSN (data store name)

is replaced with EEN (extemal entity name).

DF-BTWN-P&P models the information that a DFD maintains about

a data flow between two processes. The attribute class direction is

not necessary in this case due to the construction of the key class. The

key class for DF-BTWN-P&P consists of the destination process

92

FinalReport Data Flow Diagrams

(TO), the source process (FROM), and the occurrence number

(occ#).

7.3.2 Leveling/decomposition

Leveling in data flow diagrams allows a process to be described in

fmer detail on another level of the diagram. This mechanism allows

various levels of abstraction. The top level of a DFD might merely

show a very general view of the system while the lowest levels will

show the most detail. A process that at one level shows a document

transformed in one department may at a second level show which

offices in the department are involved. This detail might not be

desirable at the top level but might be necessary to model the system

appropriately.

The leveling or decomposition aspect of the DFD metamodel is

shown in Figure 7.2. A process is the independent entity class in the

zero or one to one relationship to the dependent decomposition entity

class which inherits the key class of process, process ID (PID). This

relationship is provided, as previously described, for modeling the

levels of a data flow diagram. A decomposition is the independent

entity class in the weak many to one relationship to a dependent

occurrence of a process (PRO-OCC-IN-DEC), external entity (EE-

OCC-IN-DEC), and/or a data store (DS-OCC-IN-DEC). Each occur-

rence has a one to zeroor one relationship to its respective entity class

(DATA-STORE,PROCESS, or EXTERNAL-ENT) and inherits its key
class from that class.

7.3.3 Role of the Structure and Link Entity Classes

The data flow was the most difficult construct in the DFD method-

ology for which to model the information structure. As noted before,

data flows depict information flow and there must be an associated

information "packet" of known composition. The simplest case is a

single data flow from one process to another. The most complex case

occurs with converging or diverging data flows. The difficulty arose

when trying to model the flow of information as it split into multiple

data flows (diverged) or merged into a single data flow from several

data flows (converged).

The STRUCTURE entity class was created to model the splits (di-

verges) and joins (converges) that can occur with data flows. For our

modeling purposes, the data flow is viewed as being broken up into

pieces called structures and links. Collectively, these pieces make up

a path. A path, therefore, is modeled as a combination of structures

and links. Please refer to Figure 7.4.

Analysis of Methods 93

FinalReport Data Flow Diagrams

oc¢_w1_ _1

i I I

6 .=,.,., o, r -''-°'
n-_,_ i-""J'-°f I _w) I

I---12-1 14

Figure 7.4 Structtme,Link,and Packet Entities

Analysis of Methods

A structure represents a connection point on the path between the

source and destination. It occurs at any point in which a data flow

starts or ends and wherever data flows diverge or converge. Links

represent the part of the path between the structures. A simple path

from process A to process B would consist of a structure at process

A, a structure at process B, and a link between the two structures. A

path containing process A and a diverging data flow which ends at

process B and process C would be slightly more complicated. It

would contain an additional structure at the split, structures at each

process as before, and a link from process A to the diverging structure,

and links from the diverging structure to the structures at processes
B andC.

Therefore, in the DFD metamodel a link is the independent entity in

a weak one to many relationship to LINK-OCC-IN-DF1 ,LINK-OCC-

IN-DF2, and LINK-OCC-IN-DF3. LID is inherited in each of these

cases from link's key class. Note that link's descriptive attribute

classes consist of a packet id (PA/D), a source (START), and a

destination (END).

A STRUCTURE entity is the dependent entity in a weak one tO many

relationship to PACKET. It is the independent entity in a weak one

to many relationship to PACK-IN-STRUCT. It is also the independent

entity in two strong one to many relationships with link.

7.4 Strengths and _A'eaknesses

The characteristics of a methodology that are viewed as strengths or

weaknesses are generally subject to opin.ion and this section is no

exception in that regard.

The DFD modeling approach focuses the modeler's viewpoint to

reflect that of the data processors. This is one of its major strengths

94

Final Report Data Flow Diagrams

Analysis of Methods

and allows the modeler to avoid the bias associated with a person or

organization's local view and obtain a more global view. Another

strength is the fact that the DFD methodology encourages the modeler

to decompose and partition information into smaller units so that the

higher levels of the diagram are more abstract and the lower levels

show more detail. This top-down approach is valuable in analysis and

in understanding complex models. DFD processes can also operate

simultaneously which is a key advantage over techniques that only

allow sequential processes.

There is some confusion concerning the difference between physical

DFD (PDFD) and logical DFD (LDFD) models [Whitten 86]. This

can be a strength when used correctly, but more often is a weakness

due to the confusion and misuse caused by such confusion. A PDFD

model is concerned with those aspects of a system that influence how

the processes, data stores, and data flows axe implemented (PDFD

data flows represent actual processes and the movement of data). A

PDFD is therefore an implementation dependent view created for the

analysis of a system. A LDFD model, on the other hand, is an

implementation independent view created for the design of a system.

LDFDs show only the essential features of system being modeled.

Implementation dependent processes found in the PDFD are omitted

in the LDFD view. In fact, implementation details axe explicitly
avoided.

7.5 Tips and Traps

The following observations have been made about data flow dia-

grams [DeMarco 79]:

1. How do D FDs differ from system flowcharts? DFDs show the flow

of data while system flowcharts show the flow of control. DFDs also

present the design philosophy progressing from the abstract at the

upper levels to the concrete at the lower levels and hence, unlike

flowcharts, are used as specification tools.

2. How many levels should be expected? Although dependent on

system size and the extent of partitioning at each level, ten levels

would probably be a good cutoff for a leveled DFD. With ten levels,

one should be able to model quite large systems.

3. When looking at the details of level 11,is modification of the n-1

level often required? Yes. Usually, however, the resulting ripple

effect only goes up one level.

4. What if it is difficult or impossible to get started on a pure top-do_,n

analysis? If it is too difficult to see the big picture, the middle might

be a good place to start. After collecting all of the middle-level

pictures, combine them into one diagram and then try building the

95

FinalReport Data Flow Diagrams

top level.

5. How can the flow of physical goods be represented on a DFD if

one is restricted to pure data ? Although it is often difficult to separate

the two, often objects have data content. This could be part numbers,

a count of the objects, or some other form of data content. In a

hospital, for example, patients would have their ages, blood types,

and pulse rates as forms of data content. The doctors and nurses would

still not show up on the DFD since they are processing the data.

Other common errors include processes that have inputs but no

outputs and processes that have output but no input. All processes

must have at least one data input and one data output.

7.6 Integration With Other Methodologies

The idea behind integrating methodologies is to use the information

contained in one methodology, such as DFD, to build a model in

another methodology such as IDEF0. The advantage of this lies in

the different views of a system that each methodology provides.

Integration with other methodologies will initially address IDEF0 to

LDFD, LDFD to IDEF0, and PDFD to IDEF0 because IDEF0 has

similar semantics to DFD. The integration of IDEF0 to PDFD will

not be addressed initially since it requires automation of the design

process which we anticipate to be the most difficult.

7.7 Conclusions

DFD provides the modeler with a methodology for modeling a

system from the viewpoint of the data. It was designed to avoid the

bias in models normally created when a person or department's

viewpoint is taken and to capture a global view of the data.

Integration with other methodologies will focus initially on integra-

tion with IDEF0 and Structure Charts as the pursuit for more general

integration strategies continues.

Analysis of Methods 96

FinalReport Data Flow Diagrams

Appendix A. Notational Conventions

Whit'-n, Bentley, Ho

DATA S'IrOUE DATA FLOW

De Mm_-o

IDCrlD_AL ENTrn DATA $'rORE DATA FLOW

Gsne and Sarson

EXTEIUqALEN'I'TYY DATA S'rURE DATA la._W

DFD Notational Conventions

Data Flow Diagrams are also referred to as DFD's, Data Flow

Graphs, and Bubble Charts.

Analysis of Methods 97

Final Report Data Flow Diagrams

Analysis of Methods

Appendix B. Abbrevialions used in the DFD Metamodel

CONTEXT: context

DATA-STORE: data store, file

DECOMPOSITION: decomposition

DF-BTWN-P&EE: connects process and external entity

DF-BTWN-P&DS: connects process and data store

DF-BTWN-P&P: connects process to process

DIRECTION: indicates the source to destination direction of the DF

DSN: data store name

DS-OCC-IN-DEC: data store occurrence in decomposition

EXTERNAL-ENT: extemal entity

EE-OCC-IN-DEC: extemal entity occurrence in decomposition

EEN: external entity name

FROM: source process for process to process connection

L/D: link id

L/NK: link

LINK-OCC-IN-DFI: link occurrence association with a data flow

between a process and a data store

LINK-OCC-IN-DF2: link occurrence association with a data flow

between a process and an extemal entity

LINK-OCC-IN-DF3: link occurrence association with a data flow

between two processes

NAME: name

OCC: occurrence number

PACK-IN.STRUCT: packet in structure

PID: process id

PROCESS: process

PRO-OCC-IN-DEC: process occurrence in decomposition

ROLE: role

SID: structure id

STRUCTURE: for splits and joins

TO: destination process for process to process connection

98

Final Report Data Flow Diagrams

References

DeMarco, Tom. "Structured Analysis and System Specification."

New York: Prentice-Hall, 1979.

Gane, Chris and Sarson, Trish. "Structured Systems Analysis: tools

and techniques," New York: Improved Systems Technologies

Databooks, 1977.

Ross, Douglas T., "Structured Analysis (SA): A Language for Com-

mtmicating Ideas." IEEE Transactions on Software Engineering,

January 1977.

SofTech, "Integrated Computer-Aided Manufacturing (ICAM)

Function Modeling Manual (IDEF0)," Technical Report

UM110231100, June 1981.

Whitehouse, G.E. "Systems Analysis and Design using Network

Techniques," Prentice-Hall, 1973.

Whitten, Bentley, and Ho. System Analysis and Design Methods. St.

Louis: Times Mirrow/Mosby College Publishing, 1986.

Yourdon, E. and Constantine, L.L., "Structured Design," Yourdon

Inc., 1975.

99Analysis of Methods

8

Structure Charts :sMOdeling the Referentialtructure I

ince the mid '70s, programmers and analysts have realized the
importance of designing programs before coding takes place.

Just as an architect completely specifies the plans of a building and

builds models before construction begins, the designer of large

computer programs must develop design specifications and create

models before coding starts. As computer programs grow increas-

ingly complex, poorly designed programs become unmanageable

with higher maintenance and modification costs and unreliable per-

formance. Structure charts were developed to graphically document

the hierarchical relationships between modules in computer pro-

grams. Moreover, structure charts were designed to promote modu-

larity and data hiding and to highlight poorly designed referential
structures.

This chapter will briefly orient the reader to the purpose, syntax, and

semantics of structure charts. Next, the Integrated Computer-Aided

Manufacturing (ICAM) DEFinition (IDEF) language IDEFI infor-

mation model of the structure chart methodology will be presented.

This will be followed by an examination of the strengths and

weaknesses of the methodology. Finally, some hints for using struc-

ture charts and an evaluation of integration strategies with other

methodologies will be presented.

1 Funded in pan by Tandem Computer Incorporated

Analysis of Methods 100

Final Report Structure Charts

8.1 What are Structure Charts?

I-I
(--)

D_TA

r

L J

/-/
I1--II

Fi_ 8.1 Types of M_lules

Understanding structure charts can be approached by clarifying the

differences between structure charts, flowcharts, and data flow dia-

grams (DFDs). Although the motivations for each are similar, the

methodologies are quite different.

Flowcharts model the flow of control while only implicitly represent-

ing the referential structure. They do not model the flow of data.

DFDs, on the other hand, model the flow of data rather than the flow

of control. A DFD is a declaration of the data flow requirements of

a system [DeMarco 79]. While flowcharts may implicitly represent

the referential structure, DFDs do not.

Structure charts were developed to aid in the design of structured

programs by graphically representing the hierarcb2cal relationships

between the modules that compose a program. Therefore, by defini-

tion, the structure chart methodology focuses on the referential

structure of the program's modules. Structure charts do not directly

model the flow of control or the flow of data. Furthermore, structure

charts reveal nothing about the decision structure or the order in

which subordinate modules are called (except for cases of parallel

activation or coroutines). Basically, structure charts represent how a

system is partitioned into modules and the interfaces between those

modules.

8.2 Syntax and Semantics

With a general idea of the purpose of structure charts, a brief look at

the structure chart syntax and semantics should provide insight into

the methodology. Appendices A and B of Constantine and Yourdon's

book provide an excellent reference for the structure chart method-

ology [Constantine 79]. Constantine and Yourdon's convention for

defining and drawing structure charts will be used throughout this

discussion. Structure charts were designed to represent the structural

features of computer programs regardless of language or environ-

ment. Modules, connections, and couples are the primary graphic

elements used by structure charts.

8.2.1 Modules

Modules are the building blocks of modular computer systems and

the primary element of structure charts (see Figure 8.1). The nota-

tional representation for generic modules is a simple rectangle. The

module name is placed in the upper-left comer of the module. The

module name represents the lexically contiguous statements and any

lexically included statements included in the module [Constantine

Analysis of Methods 101

Final Report Structure Charts

79]. In other words, the module name represents a block of code and

any subprograms it references as a single entity.

Different types of modules may be represented by variations of the

simple rectangle notation. For example, dashed line rectangles rep-

resent modules defining macros. The five basic types of modules are

1) normal, 2) data, 3) macro, 4) operating environment, and 5) device

[Constantine 79]. A module denoted by a plain rectangular box may

represent any module regardless of physical or activation character-

istics. Vertical stripes at each end denote predef'med modules. A

module whose contents consist exclusively of data is denoted by a

plain rectangular box whose vertical ends are bowed in an outward

direction. A macro is represented by a plain rectangular dashed box.

Macros are modules that are inserted or expanded in-line at compile-

time. Devices consist of input-output mechanisms (disk drives, card

readers, printers, etc.) and files among other things. They are repre-

sented by parallelograms that lean toward the right. Finally, the

operating environment for the system is denoted by a circle with a

small section removed from the left side symmetically along the

horizontal axis. The operating system, hardware, and system man-

agement are included within the operation environment.

8.2.2 Intermodular Connections and Couples

An intermodular connection is a reference by one module to another

module or to the identifier of some element within the other module

(see Figure 82). If a connection is a recursive call the module could

actually refer to itself. The types of connections are 1) subordination,

2) cotransfer, 3) subordinated cotransfer, 4) transfer, 5) data transfer,

6) data reference, 7) control reference, and 8) hybrid reference. There

are also asynchronous versions of subordination, cotransfer, subor-

dinated cotransfer, transfer, and control reference [Constantine 79].

Subordination is either a subroutine call, function reference, or macro

invocation. Cotransfer consists of one module referencing another as

a coroutine. Transfer is merely an unconditioned direct transfer of

control from one module to another by name. Data transfer differs

from transfer in that only data is transferred and not control from one

module to another. Data references are pathological connections in
which one modules references an identifier in another module. Con-

trol references and hybrid references are also pathological in nature.

A control reference is essentially a "goto". Specifically, a reference
is made in one module to an identifier in a second module as a means

of transfering control. In a hybrid reference, one module affects the

procedure of another module.

Analysis of Methods 102

Final Report Structure Charts

q- l
- ii-

m m,_ll
m

Rm qm _m_mRg _

Figure8.2IntermodularConnections

Notationally, lines represent intermodular connections (see Fig-

ure 8.3). Normal connections are represented by lines that begin and

end at the edges of the modules (rectangles). Annotating a line with
an arrowhead indicates the direction of the flow of data. Names of

parameters being passed may be added near the connection line.

Adding an open circle to the tail of an annotated arrow indicates the

parameters are data. Alternatively, adding a filled circle to the tail

indicates the parameters are for control purposes. Passing the name

of an employee to a module would be an example of data while

passing an error flag would be an example of a control parameter.

Coupling is a measure of the interdependence of modules [DeM-

arco 79]. A couple is a piece of information that flows between

modules via connections. Couples are represented by short arrows

with open or closed circular tails drawn parallel to the intermodular

connections. A direction is therefore associated with a couple repre-

senting the direction that the information is flowing. The information

will be either control information or data. An intermodular connec-

tion may have multiple couples associated with it.

Analysis of Methods 103

FinalReport Structure Charts

MODULE-1 _a,b_C I MODULE-3

MODULE-2 MODULE-4

Analysis of Methods

Module-1 calls module-3 passing data a,b which returns data c,

Module-1 calla module-2 using a nomll connection; it passes a

as data and module-2 returns no value.

Module-1 calls module-4 which retumll a control value k.

Figure 8.3 Annotations for Connections

Cohesion and coupling axe interrelated concepts. In general, as

cohesion increases within individual modules, the coupling between
those modules decreases. Cohesion has been called the cement that

holds the processing elements of a module together [Constantine 79].

It is a measure of the functional relatedness between elements that

are in a module. The range of possible levels of cohesion, from least

to most desirable, are clasified as coincidental, logical, temporal,

procedural, communicational, sequential and functional cohesion.

Cohesion levels provide a powerful tool that gives the designer a feel

for the degree that elements in a module are bound or related, and

thus the degree of coupling of inherent in the proposed design. The

major drawback of this approach to design analysis is its subjective
nature.

Connections, other than the types already given, may also be divided

into two general categories: normal and pathological. Normal con-
nections occur when a reference is made to the module name.

Pathological connections are. by definition, potentially unhealthy

connections. A pathological connection can be an intermodular con-

nection in which a direct reference by one module is made to data of

another module or a direct transfer of control is made between

modules. A module that relies on the value of a variable calculated

in another module is one example of • pathological connection.

Notationally, pathological connections are represented by lines with

annotated arrows as before except the lines begin and end within the

rectangles representing the modules. Pathological connections are

104

FinalReport Structure Charts

one example where the graphical notation of structure charts can

highlight potential problems.

Lexical relationships, such as inclusion and contiguity, may also be

expressed in structure charts. Lexical inclusion represents the fact

that one module may be completely within the lexical boundaries of

another module. Lexical contiguity represents the fact that two mod-

ules have an order associated with them. Since lexical relationships

are fixed at definition time, strong interdependencies may be intro-

duced between modules by the lexical structure of the program

[Constantine 79]. Lexical interrelationships axe often referred to as

content-coupling and represented by the overlapping of modules.

8.2.3 Procedural Annotations

Control structures may also be associated with modules to convey

procedural information about the connections that the module makes.

The three types of control structures are loop, decision, and goto.

To represent intermodular references from within a loop construct, a

line is drawn from inside one end of the calling module through the

intermodular connections enclosed inside the loop and terminating

inside the calling module. An arrowhead at one end of each connec-

tion (line) distinguishes the direction of the calls. The arrowhead end

of the connection points to the referenced module. The annotation for

references within a loop can be nested in any combination that loops
themselves can be nested.

Intermodular references which depend on the result of a condition or

decision to occur may be represented by enclosing the originating

end of the connection (line) in a diamond. More than one intennodu-

lax reference may originate from the diamond if multiple intermodu-

lax references occur due to a single condition or decision.

The last control structure is the goto. It simply represents a one way

connection in which no return to the module is planned for in the
structure.

8.3 Melamodel

The metamodel of the structure chart methodology was developed

using IDEFI. In this chapter, the structure chart methodology is being

treated as a system and the information managed by this methodology

is being modeled using IDEFI (see Figure 84).

Analysis of Methods 105

FinalReport Structure Charts

Contalm/IcL-nfifim Of

L_

C_mms/

Super_To
(Supcr-Moduk,,.NIn_)

.o--],=:_
Con_ins/

Sub_To
(Sub-Module=N.Lmc)

OccurLBe_ In/

I ([tL.=t,=-)(
o_u,,_Xf_r_l,/ {¢'_'"" I

I Lm_ CH_-'ollow_Nan, g)

I(o,_-_,_)

/¢"--'"--]
Cont=hl=/ /

Hu A/ 1Dcltirmt_on_Of

f (To = N=m¢) ._=oci==d_Wi_ /\

i
I

Conmim! i

To F_

I=--'.° I

Figure 8,4 IDEF] Structure ChartMetamodel

8.3.1 Modules

As discussed earlier, modules are the primary element of structure

charts. The module entity class (see Figure 8.5) therefore provides a
logical starting point for the structure chart metamodel. Modules

maintain certain information, specifically, an identifying name and

the type of module (i.e. normal, data, macro, operating environment,

device, predeirmed normal, predef'med macro, or predef'med data).

The module name is unique and therefore sufficient to form the key

class for the module entity class.

Figure 8.5 Metamodel of modules

Analysis of Methods 106

Final Report Structure Charts

8.3.2 Lexical Relationships

Lexical inclusion between modules reveals structural information

about module pairs. A lexically inclusive relationship between two

modules involves one module being completely included within the

other. This is a super-module and sub-module relationship. The

important information to manage is the name of the super-module

and the name of the sub-module. The lexical-inclusion entity class

(see Figure 8.6) may now be added to the metamodel. Its key class

will consist of the names of the super-module and sub-module.

_)

Contains/

Super_To

(Super-Moduh_Name)

T_.o_R_V

f

Sub_To

(Sub-ModulemNm'r_)

Occum Before_In/
_mt_OffLm_N,u.ne)

Figure 8.6 Metamodel oflexical inclusion

Analysis of Methods

Lexical adjacency of modules also reveals structural informmion

about module pairs. A lexically adjacent relationship between two

modules involves their ordering. As with lexical inclusion, the names

of the two modules is the only pertinent information to maintain. In

this case, however, the name of the "lead" module and the name of

the "follow" module are used to distinguish the order. The contigu.

ous-pair entity class may now be added to the metamodel with its

key class consisting of lead and follow.

8.3.3 lntermodular Connections

Although modules are the primary building blocks for structure

charts, the intermodular connections are just as important. Recall that

an intermodular connection represents a reference or call to a module

from inside another module. This can occur with or without argu-

ments being passed. Besides the name of the calling module and the

name of the called module, the type of connection must be main-

tained. Recall that the types of connections are subordination,

cotransfer, subordinated cotransfer, transfer, data transfer, data ref-

erence, control reference, and hybrid reference. In addition the asyn-

chronous versions of subordination, cotransfer, subordinated

cotransfer, transfer, and control reference are also possible. The

called module name will be referred to as the To module and the

calling module name will be referred to as the From module. The

Connection entity class (see Figure 8.7) may now be added to the

107

Final Report Structure Charts

Analysis of Methods

structure chart metamodel. Its attribute classes will consist of the To

module, the From module, and the type of connection. A key class

is now needed to uniquely identify the entity class. Note that none of

the items in the attribute class were sufficient either singly or in

combination to uniquely identify the connection entity class. A

connection id or Cid will be created to serve as the key class.

0_am*_

cont_im/ A), Co.alm/

(Fvorn_N_ N_nc)

Figure 8.7 Metamodel of connection

8.3.4 Couples

Connections are often annotated with one or more couples. They

represent the fact that data items are part of the connection. Recall

that couples provide a measure of the interdependence of modules

and consist of short arrows. Additionally, couples with open or filled

circular tails represent information about the role of the arguments.

The role may be control either information or data. A couple also has

one or more parameters and a direction associated with it. The Couple

entity class (see Figure 8.8) may now be added to the structure chart

I (ca¢_

To glum

Con tain,_/Co nl ained_ In

J (c.kt D_q_tkm. ¢_0_)

Figure 8.8 Metamodel of couple

108

Final Report Structure Charts

metamodel with a zero, one or many relationship to the connection

entity class. By inheriting the key class from the connection entity

class Cid and combining it with direction, and role, a uniquely

identifying key class is created for the Couple entity class.

8.3.5 Labels

A connection may or may not have a label. A label is an entry point

to a module used by control references. A label does not have to be

unique. This information is kept about each connection but cannot be

included as an the attribute class of the Connection entity class due

to the no-null rule in IDEF1. A label entity class (see Figure 8.9) will
therefore be created and added to the structure chart metamodel with

a zero or one relationship to the Connection entity class. The key class

of the Connection entity class Cid will be inherited and label will be

the only additional attribute class.

Co_mindld_fiev_Of

Figure g.9 Metamodel of label

8.3.6 Control Structures

There is one facet of modules that has not been addressed. A module

may have zero, one or many control structures associated with it. A

control structure is an annotation to a module that conveys procedural
information about the connections that the module makes. The name

of the module containing the control structure is the first piece of

information that must be kept. It will be referred to as the Owner. The

type of control structure (type-of-CS) will also need to be maintained.

Decision, loop, and goto are the three possible types of control

structures. Since each module may have zero, one, or many control

structures, the information cannot be kept by the Module entity class

(see Figure 8.10). This would violate the no-repeat and no-null rule.

A Control-Structure entity class will therefore be added to the

structure chart metamodel. Neither the Owner nor Type-of-CS are

sufficient to form the key class. The control-structure key class will

Analysis of Methods 109

Final Report Structure Charts

Analysis of Methods

therefore consist solely of a unique name (Sid) assigned upon creation

of the entity class. Owner and Type-of-CS will serve as non-key

classes.

I 1t_ A/
Own_ of

T_pb_-C4

Figure 8.10 Metamodel of control structure

8.3.7 Connections in Control Structures

The discussion of the structure chart metamodel is now almost

complete. The last detail to consider is that a connection may be in

zero, one or many control structures and that control structure may

contain one or many connections. The Connection-in-CS entity class

(see Figure 8.11) will now be added to the structure chart metamodel.

It will establish zero, one, or many relationships with the Control-

Structure entity class and the Connection entity class. The key class

will consist of Sid inherited from the Control-Structure entity class

and Cid inherited from the Connection entity class.

Figure 8.11 Metamoclel of connections in control structures

8.4 Strengths and Weaknesses

Structure charts may also be effectively used with other methodolo-

gies. Using structure charts with Entity Relationship diagrams and

DFD forms a powerful design methodology for many business ap-

plication systems.

II0

Final Report Structure Charts

Coupling and cohesion are two design characteristics which structure

charts graphically highlight (coupling is concerned with dependence
between modules while cohesion is concerned with intramodule

association).

Coupling provides a measure of independence between modules and

has a strong effect on the readability of both the design and code of

modules [Myers 75]. The higher the coupling between modules, the

greater the likelihood of side effects when making modifications to
those modules.

Cohesion pertains to the strength of association of the elements inside

a module. A module with high cohesion contains elements that are

closely related and can be naturally treated together. A module with

low cohesion, on the other hand, contains elements with unrelated

elements. High cohesion is desired for modular, readable designs and
code.

Normal and pathological connections are also graphically high-

lighted by structure charts. Recall that pathological connections are

potentially unhealthy connections that indicate a design with greater

likelihood for structural problems.

A major weakness of structure charts is its inability to model object

oriented programming applications. 2 Features such as multiple or

single inheritance and polymorphism will require additional graphi-

cal representations. Structure charts also cannot model program data

structures. The types of problem areas in design that structure charts

are designed to graphically highlight is not sufficient in the world of

object-oriented programming.

8.5 Tips and Traps

The following observations have been made about structure charts:

A structure chart with crowds of couples is a sure sign of poor

partitioning. Overcoupling generally indicates poor cohesion[DeM-
arco 79].

The four major factors that tend to influence coupling are 1) the .types

of connections between modules, 2) the complexity of the interface.

3) the type of information flow along the connection, and 4) the

binding time of the connection [Constantine 79]. The complexity of

the interface refers to the number of arguments passed between

2The object-oriented design method IDEF4 was developed to model
object-oriented systems.

Analysis of Methods 111

FinalReport Structure Charts

modules. The types of information that flow along a connection are
data, control, and a combination of the two. Constantine claims that

control communication is dispensable and that the communication of

data alone is necessary for functioning systems of modules. Coupling

is minimized when only data flows between interfaces. Modules

using control communication must be less independent and therefore

more highly coupled. The binding time of the connection refers to

connections bound at execution, linking, compilation, or during
coding. The earlier (and therefore longer) a connection is bound, the

higher the coupling tends to be between the caUing and called
modules.

Control information is often disguised as data information in the form

of flags or an address. Coupling is increased whenever control

information is passed between modules.

Global data greatly increases intermodular coupling. By making data

only accessible to those modules that need access, coupling can be
greatly decreased.

Modules coupled with a single input couple and/or a single output

couple will generally have the strongest cohesion. Poor cohesion is

often indicated by modules with downward passing switches for

control purposes and by modules that require pathological data
communications [DeMarco 79].

8.6 Integration With Other Methodologies

The following observations have been made about the correlation

between DFDs and structure charts [DeMarco 79]. A DFD is a

statement of requirement declaring what has to be accomplished

while a structure chart is a statement of design declaring how the

requirement shall be met. The relationship between the two reflects

the relationship between intent and method.

Transform analysis and transaction analysis are two methods from

structured design for deriving a structure chart from a DFD. This is

important because these methods embody a design process that can

be automated. Insights from these methods combined with the results

from our structure chart metamodel should provide a solid platform

for developing an integration strategy between structure charts and

data flow diagrams. The question of how to derive a data flow

diagram from a structure chart could be solved by collecting the

additional information required by the data flow diagram when

constructing the structure chart.

Analysis of Methods 112

Final Report Structure Charts

8.7 Conclusions

The information that is actually maintained by the structure chart

methodology is considerably less than that maintained by the data

flow diagram methodology. This is not surprising since manual

methods exist for deriving structure charts from data flow diagrams.

Data flow diagrams are also closely related to IDEF0 models in the

information they keep. At this point, efforts will be concentrated on

isolating the common pieces of information maintained by structure

charts, data flow diagrams, and IDEF0 and developing an integration

strategy among these three methodologies.

Analysis of Methods 113

Final Report Structure Charts

Appendix A. Abbreviations used in the Strncture Chart

Metamodel

Cid: connection id; a unique identification number assigned to each

connection upon its creation in a structure chart

Connection: entity class that maintains the name of the calling

module, the name of the called module, and the type of connection

between the two modules

Connection-in-CS: establishes a zero, one or many relationship with

the control-structure entity class and the connection entity class

Contiguous-Pair: entity class needed to maintain the names of two

modules with a lexically adjacent relationship. Lead and Follow axe

used to distinguish the order

Control-Structure: entity class needed to maintain the name of the

module containing the control structure (owner) and the type of

control structure (type-of-CS)

Follow: inherited name of the module that follows the other in

contiguous-pair. See contiguous-pair entity class

From: inherited name of referenced module

Label: (entity class) an entry point to a module used by control
references in structure charts

Label: (attribute) identifier of the entry point

Lead: inherited name of the module that precedes the other in the

contiguous pair

Lexical-lnclusion: entity class

Module: entity class

Name: name by which a module is referrenced

Owner: name of the module in which the control-structure occurs

Role: the type of information being passed; either control information
or data

Sid: a unique tag assigned to each control-structure upon its creation

Sub-Module: included in the key class of the Lexical-Inclusion entity

class; inherited name of the included module

Super-Module: included in the key class of the Lexical-Inclusion

entity class; inherited name of the including module

To: inherited name of the referencing module

Analysis of Methods 114

FinalReport Structure Charts

References

Constantine, L.L. and Yourdon, E. Structured Design. Englewood

Cliffs, New Jersey: Prentice-HaU, 1979.

DeMarco, Tom. Structured Analysis and System Specification. New

York: Prentice-Hall, 1979.

Myers, Glenford J. Reliable Software Through Composite Design.

New York: Petrocelli/Charter, 1975.

Analysis of Methods Pr_,_._,NG P,_GE _ NOT I_ILMED

,v_C_si _.
116

Glossary of Important Terms

The following terms appear in this report:

Activity (IDEFo): a function with inputs, controls, outputs and mech-
anisms.

Alternate Key (IDEFlx): a collection of attributes which uniquely

identify an instance of an entity. Alternate keys cannot be inherited
across relations.

Attribute: a data element which maintains information about, charac-

terizes or describes an entity (IDEFIx). In ER attributes are functions

which map an entity set to a Cartesian product of value sets.

Attribute Class (IDEF1): maintains information about, characterizes

or describes characteristics of an entity class.

Bridge Type (ENALIM): an association between a LOT and a
NOLOT.

Candidate Key (ER): an attribute or group of attributes whose values

uniquely identify every tuple in a relation. No attributes can be

removed from the candidate key without destroying the unique
identification.

Cardinaliry: the number of instances of the dependent entity (class,

type or set) that are related to a single instance of an independent
entity.

Categorization Relation (IDEFlx): defines generalization-special-
ization relationships.

Cohesion: a measure of the inter-modular dependence.

Concept (IDEFo): something that is produced and/or consumed by

an activity. Concepts can be either actual things or abstract ideas, or

information objects.

Conceptual Schema: a logical or non-specific representation of the

data to help provide a basis for the mapping of the extemal and
internal schemas.

Connection-relationship (IDEFlx): a link relating two entities origi-

nating at the parent or independent entity and terminating at the child

or dependent entity. (similar to a link class in IDEFI).

Analysis of Methods 117

Final Report Glossary

Constraint:. a predicate logic statement about objects and relations in

a model which must hold in order for a model to be valid.

Converging Data Flow (DFD): many sources and a single destina-

tion. Similar to many-to-one relationships.

Couple: information flowing between modules via links.

Coupling: a measure of modular interdependence.

Data Flow Diagram: a network view of the system showing the flow

of data, the transformation of data by processes, the storage of data

by data stores and the sources and/or destinations of data from outside

the comext of the system referred to as external entities.

Decomposition (IDEFo): view of three to six sub-functions of an

activity and their relationships.

Dependent Entity Class (IDEFI): an entity class whose existence

depends on the existence of the independent entity class.

Discriminator Attribute (IDEFlx): a characteristic which dis-

tinguishes categorized entities in a generalization-specialization re-

lationship.

Diverging Data Flow (DFD): one source and multiple destinations.

Similar to a one-to-many relationship.

Data Store (DFD): a temporary storage place for data.

Entity (IDEFIx): a type of real or abstract object.

Entity Class (IDEFI): a class of real or abstract objects about which

information is kept.

Entity Key (ER): a group of attributes such that the mapping from the

entity set to the corresponding group of value sets is one-to-one.

Entity Set (ER): a group of like or similar entities. Entity sets may or

may not be mutually disjoint.

External Entity (DFD): a source or destination of data outside the

context of the system.

External Schema: an abstract user or application view of an environ-

ment or system.

Existence Dependence (ER): a child entity must have a parent entity
for it to exist.

Fact Type (ENALIM): a link or association between two ENALIM

objects.

Foreign Key (IDEFlx): primary key or keys inherited from other
entities.

Analysis of Methods 118

Final Report Glossary

Idea Type (ENALIM): it is an association between two NOLOTs.

Identification Dependence (ER): identification of the child entity

depends on the identification of the parent entity on which the child's

existence is dependent.

Identifier Constraint(ENALIM): a constraint placed on an object role

pair which states that the role pair uniquely identifies an instance of

the fact type or association.

Identifier-dependent (IDEFlx): an entity which depends on other

entities in order to have meaning.

Identifier-independent (IDEFlx): an entity which can exist indepen-

dent of other entities.

Independent Entity Class (IDEF1): an entity class which can exist

independent of other entity classes.

Inheritance (IDEFI): when two entity classes are linked via a link

class relationship, the attributes occuring in the key class of the

independent entity class are inherited by the dependent entity class.

Inherited Attribute Class (IDEF1): attributes inherited across a link

class, from an independent to a dependent entity class.

Intermodular Connections (Structure Charts): indicates a reference

or call made by one module to another.

Internal Schema: refers to the actual implementation of the data or

the database schema.

Key Class (IDEFI):. a collection of attribute classes which uniquely

identify an instance of an entity class.

Label (Structure Charts) : the point of entry into a module.

Leveling (DFD): pertains to the breaking down of a process into f'mer

detail. Similar to decomposition in IDEF0 diagrams.

Lexical Contiguity (Structure Charts): when two modules may have

an order associated with them.

Lexicallnclusion (Structure Charts): when one module is completely
within the lexical boundaries of another.

Link Class (IDEF1): a binary relationship between two entity classes.

LOT (ENALIM): Lexical Object Type, denotes concepts or objects

which can be processed by an information system.

Metamodel: a model of the information kept by a methodology.

Modularlntradependence: relationship of elements within a module.

Analysis of Methods 119

FinalReport Glossary.

Modularlnterdependence: relationship of elements in different mod-
ules.

Modules: building blocks of modular computer systems and the

primary entity of structure charts.

NOLOT (ENALIM): Non-kexical Object .Type, denotes concepts or

objects which cannot be directly processed by the system.

Non-specific Relations (IDEFlx): a many-to-many or one-to-one

relationship.

Object Types (ENALIM): a collection of objects which are grouped

together in a class hierarchy.

One to Zero or One Link (IDEFI): an instance of an independent

entity class can be associated with either zero or one instances of the

dependent entity class.

Owned Attribute Class (IDEF1): attributes which axe owned by an

entity class, (they originate from that entity class).

Path (IDEFo): a link between two activities, which relate a producer
activity to a consumer activity.

Primary. Key (IDEFIx): a collection of attributes which uniquely

idemify an instance of an entity. Primary keys are inherited across

relations from independent to dependent entity.

Process (DFD): transforms data flows showing some type of work

performed on the data.

Regular Enti_ Relation (DFD): relation where entities are com-

pletely identified by their entity key.

Regular Relationship Relation (DFD): relation where all entities are

identified by their owned attributes.

Relation (ER): a table of related objects.

Relationship Relation (ER): an organization of information of related
entities.

Relationship Set (ER): similar to an entity set, it refers to a classifi-
cation of like or similar entities.

Role (IDEFlx): the function an entity performs in a relationship. A

role describes the use of an attribute in an entity. The role name is

descriptive of the role.

Role Equali_ Constraint (ENALIM): a constraint which specifies that

the set of instances of two roles must be equivalent.

Role Exclusion Constraint (ENALIM): a constraint which says that

the set of instances of two roles must be mutually exclusive.

Analysis of Methods 120

Final Report Glossary

RoleName (IDEFlx): the name of the relation which is placed in front

of an inherited attribute to distinguish between similar attributes

inherited via different relations.

Role Subset Constraint (ENALIM): a constraint which states that the

set of instances of one role must be a subset of the set of instances of

another role.

Role Uniqueness Constraint (ENALIM): a constraint which states that

an instance of an object is uniquely identified by the combination of

two or more role pairs.

Strong One to Many Link (IDEF1): an instance of an independent

entity class must be associated with at least one instance of the

dependent entity class.

Structure (IDEFo): a metamodel artifact which models spreads,

splits, joins and bundles of concepts.

Structure Charts: focuses on how a program is to be partitioned into
modules and on the interfaces between the different modules.

Subtype Exclusion Constraint (ENALIM): a constraint which states

that the sets of instances of two subtypes of an object are mutually
exclusive.

Subtype Total Constraint (ENALIM): a constraint which declares that

the union of the sets of instances of all the subtypes of an object,

constitute the set of instances of the supertype.

Total Role Constraint (ENALIM): a constraint which states that there

must be at least one instance for every object type playing a role.

Tunneled Concept (IDEFo): a concept which enters the model from
the environment or leaves the model to the environment without

propagating through the parent level activities.

Value Set (ER): a classification of similar values.

Weak Relationship Relation (ER): a relation upon which entities

depend in order to be completely identified.

Weak One to Many Link (IDEF1): an instance of an independent

entity class can be associated with either zero. one or many instances

of the dependent entity class.

Analysis of Methods 121

Index

A

activity 22, 28, 31, 32

alternate key 59

attribute 5, 9, 12, 16, 29, 31, 58, 62

attribute class 6, 17

B

bridge type 40, 47

C

cardinality 10, 12, 14, 56, 58

categorization relation 57

cohesion 104, 11 l, 112

concept 20, 21, 23, 26, 30, 31, 33

conceptual schema 5, 37, 38, 53, 68, 69

connection-relationship 56, 58

constraint 10, 14, 63

converging data flow 87

couple 101,103,108, 11 l, 112

coupling 104, 105, ll2

D

data flow diagram 85, 86, 88

data store 86, 88, 90, 92

decomposition 23, 25, 28, 33

dependent entity class 10, 12

discriminator attribute 57

diverging data flow 87, 90, 93, 94

E

entity 54, 57, 60, 62, 65, 68

entity class 6, 17

entity set 73, 76, 78, 79

Entity-Relation 53

existence dependence 75, 78

external entity 86, 87, 91,93

F

fact type 38, 41,45, 47

foreign key 60

I

idea type 40, 47

idemifer-dependent 55, 60

Analysis ofMethods 122

_ Index

Analysis of Methods

identification dependence 78

identifier constraint 40, 41

identifier-independent 55, 60

independent entity class 10, 12

inheritance 11

inherited attribute class 12, 13

mtermodular connection 102, 105,107

K

key class 8, 9, 12, 13, 17

L

label 109

leveling 90, 93

lexical contiguity 105

lexical inclusion 107

link class 9, 14, 16, 17

LOT 38, 39

M

metamodel 4, 12

methodology 53

modular interdependence 103

modules 100, 102, 104, 105, 107, 108, 112

N

NOLOT 38, 39, 45

non-specific relations 58

O

object type 38, 39, 41, 42
one-to-one link class 14

owned attribute class 13, 17

P

path 28, 29, 31

primary key 56, 57, 59, 60. 63.65.69

process 86, 88, 91,93, 94

R

relationship 8, 14, 59, 73, 78, 79

relationship set 73, 81

role 63, 65, 66

role equality constraint 42

role exclusion constraint 43

role subset constraint 43, 48

123

Index

role uniqueness constraint 42

role-name 59, 66

S

strong-many-to-one link class 14

structure 22, 30

structure charts 100, 101

subtype exclusion constraint 44

subtype total constraint 44, 45

T

total role constraint

tunneled concept

V

value set

W

weak-many-to-one link class

................. 42,45,47,48

........................ 30

....................... 73,74,76,80

.................. 14

Analysis of Methods 124

L_

/
/

Copies of this publication have been deposited with the Texas State Library in

compliance with the State Depository Law,

